
Who Knew You Could Do That with RPG IV?
A Sorcerer’s Guide to System Access and More

Brian R. Smith, Martin Barbeau, Susan Gantner,
Jon Paris, Zdravko Vincetic, Vladimir Zupka

International Technical Support Organization

SG24-5402-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5402-00

Who Knew You Could Do That with RPG IV?
A Sorcerer’s Guide to System Access and More

February 2000

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 2000)

This document was updated on April 25, 2000.

This edition applies to Version 4 Release 4 of the IBM Integrated Language Environment (ILE) RPG for AS/400
(5769-RG1) for use with Version 4 Release 4 of OS/400 (5768-SS1).

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix D,
“Special notices” on page 419.

Take Note!

Contents

Figures . ix

Tables . xi

Preface . xiii
The team that wrote this redbook . xiv
Comments welcome .xvii

Chapter 1. An introduction to RPG IV .1
1.1 Why this book on RPG IV now? .1
1.2 An interview with leading industry experts .1
1.3 Evolution of the RPG IV language .9

1.3.1 Version 3 Release 1 (V3R1) .9
1.3.2 Version 3 Release 2 (V3R2) and Version 3 Release 6 (V3R6).9
1.3.3 Version 3 Release 7 (V3R7) .10
1.3.4 Version 4 Release 2 (V4R2) .10
1.3.5 Version 4 Release 4 (V4R4) .11
1.3.6 The future for RPG IV .11
1.3.7 A future for RPG programmers .12
1.3.8 A roadmap .12

1.4 The relationship between the RPG IV language and ILE14
1.4.1 A brief introduction to the Integrated Language Environment (ILE) . .15
1.4.2 Using RPG IV without ILE .15

1.5 IBM Certified Specialist AS/400 RPG programmer16
1.6 RPG IV sources on the Web .16

1.6.1 General AS/400 resources from IBM .16
1.6.2 Non-IBM general AS/400 resources .17
1.6.3 AS/400 magazines and books on the Web .18

Chapter 2. Programming RPG IV with style. .19
2.1 The essential RPG IV style guide .19

2.1.1 Comments. .19
2.1.2 Declarations .20
2.1.3 Naming conventions .21
2.1.4 Indicators .22
2.1.5 Structured programming techniques .23
2.1.6 Modular programming techniques .24
2.1.7 Character string manipulation .25
2.1.8 Avoid obsolescence .25
2.1.9 Miscellaneous guidelines .26
2.1.10 Recommendations .26

2.2 Comments and extensions to the style guide .27

Chapter 3. Subprocedures .31
3.1 Subprocedure terminology .31

3.1.1 ILE modules .31
3.1.2 Main procedure .31
3.1.3 Built-in functions .31
3.1.4 Subroutines. .32

3.2 Advantages of using subprocedures .32
3.3 The anatomy of a subprocedure .33
© Copyright IBM Corp. 2000 iii

3.3.1 Subprocedure definition . 33
3.3.2 Procedure-interface definitions . 36
3.3.3 Order of coding the source elements . 36
3.3.4 Calling your subprocedures . 38

3.4 Moving from subroutines to subprocedures . 39
3.4.1 Why use subprocedures . 39
3.4.2 Subroutine example DATESUBR . 39
3.4.3 Transforming a subroutine to a subprocedure 40
3.4.4 DATEMAIN1 subprocedure example . 43

3.5 Using subprocedures efficiently . 44
3.5.1 Using /COPY members for prototypes . 44
3.5.2 Replacing the *ENTRY PLIST . 45
3.5.3 Subprocedures using subprocedures . 46
3.5.4 Using an ILE Service Program . 47

3.6 More on subprocedures . 50
3.6.1 The power of prototyping . 50
3.6.2 Parameter passing styles. 54
3.6.3 Using procedure pointer calls. 56

Chapter 4. An ILE guide for the RPG programmer 61
4.1 An introduction to ILE . 61

4.1.1 Modules and binding . 61
4.1.2 Service programs. 62
4.1.3 Export and import . 62
4.1.4 Binder language source . 62
4.1.5 Binding directories . 63
4.1.6 Activation groups . 63
4.1.7 CL commands used with ILE and RPG . 64

4.2 ILE tips for the RPG programmer. 65
4.2.1 Creating programs from modules (binding by copy) 65
4.2.2 Creating service programs and binding by reference 71
4.2.3 Binding service programs to programs . 81
4.2.4 Service programs, binder language, and signatures. 83
4.2.5 Using binding directories . 87
4.2.6 Activation groups . 89
4.2.7 Call stack and error handling . 99

4.3 Additional CL commands and useful ILE APIs . 115
4.3.1 Additional CL commands . 115
4.3.2 Some useful APIs to get information on ILE objects 115

4.4 More information about ILE and shared open data paths 116

Chapter 5. Exploring new ways to exploit your AS/400 system 119
5.1 Exploiting the C function library: A case study . 119

5.1.1 First things first . 120
5.1.2 Simple math functions . 122
5.1.3 String functions . 124
5.1.4 Searching and sorting: bsearch and qsort 128

5.2 Data queue APIs . 136
5.2.1 Creating and deleting data queues . 139
5.2.2 List of data queue APIs . 139
5.2.3 Programming with data queue APIs . 149

5.3 User space APIs . 153
5.3.1 List of user space APIs . 154
iv Who Knew You Could Do That with RPG IV?

5.3.2 Programming directly with user space APIs.159
5.3.3 Simplifying user space APIs programming with wrappers160
5.3.4 A user space example .164

5.4 Message handling APIs .170
5.4.1 Message types .171
5.4.2 List of message handling APIs .172
5.4.3 Programming with message handling APIs183

5.5 Sockets .189
5.5.1 Typical communication between a server and client189
5.5.2 The socket functions interface. .191
5.5.3 Example of a simple server SSERVER and client SCLIENT200
5.5.4 Server SSERVER2 and client SCLIENT2 with recovery207
5.5.5 Communication with multiple sockets (multiple I/O)210
5.5.6 Example of multiple I/O .215
5.5.7 Server and client using non-blocking mode223
5.5.8 Running the examples. .232
5.5.9 More information about sockets programming in RPG IV.234

5.6 Writing CGI programs using RPG IV .235
5.6.1 HTML form document .236
5.6.2 Introduction to a service program to aid CGI programing.238
5.6.3 RPG IV CGI programming .242
5.6.4 Simplifying CGI programming .249
5.6.5 Persistent CGI. .251
5.6.6 More information on CGI programming in RPG IV251

5.7 Understanding UNIX-POSIX APIs through IFS examples252
5.7.1 The Integrated File System (IFS). .253
5.7.2 The API manual .253
5.7.3 The path name .254
5.7.4 Introducing basic stream file APIs .256
5.7.5 Using more complex IFS APIs: Qp0lProcessSubtree()280
5.7.6 IFS APIs error reporting .301
5.7.7 More information about IFS APIs in RPG IV303

5.8 User exit programs .303
5.8.1 The system registry .303
5.8.2 The FTP client/server validation request exit points.304
5.8.3 The FTP client/server request validation sample program305
5.8.4 More information about user exit programs313

Chapter 6. Database access with RPG IV .315
6.1 Externalizing input and output .315

6.1.1 What we mean by externalizing .315
6.1.2 Putting theory into practice: An example of externalizing I/O316
6.1.3 Externalizing example: Overview. .317
6.1.4 Externalizing example: Separating database logic from display logic320
6.1.5 Externalizing example: Implementing changes323
6.1.6 Externalizing example: Other possibilities .326
6.1.7 Summary. .326

6.2 Replacing indicators with built-in functions .327
6.2.1 %EOF(FileName) .327
6.2.2 %EQUAL(FileName) .328
6.2.3 %FOUND(FileName). .328
6.2.4 %OPEN(FileName) .328
6.2.5 %ERROR .328
v

6.2.6 %STATUS(FileName) . 329
6.2.7 Indicator data structure . 329

6.3 Embedded SQL . 330
6.3.1 Rules for embedding SQL statements . 331
6.3.2 SQL preprocessor . 331
6.3.3 Error and exception handling . 331
6.3.4 Using a cursor . 333
6.3.5 An embedded SQL program example . 334
6.3.6 Source code for SQLEMBED program . 336

6.4 Stored procedures . 339
6.4.1 Creating an external procedure . 340
6.4.2 Creating an SQL procedure . 340
6.4.3 Invoking a stored procedure and returning the completion status . . 341
6.4.4 A stored procedure example . 342

6.5 Call Level Interface . 348
6.5.1 Differences between DB2 CLI and embedded SQL 348
6.5.2 Writing a DB2 CLI application . 349
6.5.3 Initialization and termination . 350
6.5.4 Transaction processing . 351
6.5.5 Diagnostic . 355
6.5.6 Data types and data conversion. 356
6.5.7 Functions. 357
6.5.8 Introduction to a CLI example . 368

6.6 Trigger programs . 379
6.6.1 Adding a trigger program to a file . 380
6.6.2 Creating a trigger program . 380

6.7 Commitment control . 384
6.7.1 File journaling . 384
6.7.2 Using commitment control with RPG native file operations. 384
6.7.3 Using commitment control with embedded SQL 386
6.7.4 Using commitment control with the CLI interface 387

6.8 More information about database access with RPG IV. 388

Chapter 7. A modern tool for a modern language: CODE/400 389
7.1 The CODE/400 editor . 389
7.2 The CODE/400 verifier . 392
7.3 The CODE/400 Designer for DDS . 393
7.4 Other tools included with CODE/400 . 394
7.5 More information about CODE/400 . 394

Chapter 8. VisualAge for RPG as a GUI for RPG applications 395
8.1 The different VARPG application models . 395
8.2 VARPG thin application models . 396
8.3 The user interface for the client application . 396
8.4 Sample application using remote calls . 397

8.4.1 The client program. 397
8.4.2 The server program . 397
8.4.3 Sample RPG source for the client side. 398
8.4.4 Sample RPG source for the server side . 399
8.4.5 Overview diagram . 400

8.5 Sample application using data queues. 401
8.5.1 The client application . 401
8.5.2 Client sample source . 401
vi Who Knew You Could Do That with RPG IV?

8.5.3 The server program. .404
8.5.4 Server sample source .404
8.5.5 Overview diagrams .406

8.6 Variations of these scenarios .408
8.7 Summary .409
8.8 More information VisualAge for RPG. .409

Appendix A. Example RPG IV programs on the Web 411
A.1 Downloading the files . 411

Appendix B. An introduction to the Integrated File System (IFS) 413
B.1 Introduction . 413
B.2 Integrated File System structure . 414

B.2.1 Stream files . 415
B.3 Path name rules using APIs . 416

Appendix C. PTFs for *SRCSTMT and *NODEBUGIO 417

Appendix D. Special notices. 419

Appendix E. Related publications . 423
E.1 IBM Redbooks publications. 423
E.2 IBM Redbooks collections. 423
E.3 Other resources. 424
E.4 Referenced Web sites. 425

How to get IBM Redbooks .427
IBM Redbooks fax order form. 428

Index .429

IBM Redbooks evaluation .433
vii

viii Who Knew You Could Do That with RPG IV?

Figures

1. Order of coding the source elements . 37
2. Entering a character coded, nonedited number . 78
3. Result of editing a character coded number . 78
4. Service program bound from three modules . 79
5. Two chained service programs . 80
6. Three chained service programs . 81
7. Program consisting of one module and one service program 82
8. Program consisting of one module and two chained service programs. 82
9. Program consisting of two modules and two service programs 83
10. Shared open data path in a common activation group. 93
11. Open data paths in different activation groups. 97
12. Call stack for program E01REG. 100
13. ILE condition token layout . 103
14. An error message after running a program with a condition handle 110
15. Job log messages resulting from a program call with errors 110
16. Details of the divide by zero message . 111
17. Details of the record in use message . 111
18. Details of the USR1218 message . 112
19. Details of the CEE9901 message . 112
20. Job log with function check messages. 113
21. Data queue communications possibilities . 137
22. Communication between programs using data queues 150
23. Programs used in the user space example . 164
24. General data structure for list APIs . 180
25. Communication between the server and client . 190
26. Recovery from failures . 207
27. Socket descriptor bits in the array of integers . 212
28. Server accepting multiple clients . 215
29. Repeating socket functions in the server and client programs. 216
30. Basic steps when using the CGI program . 235
31. HTML form document displayed by the Web browser 237
32. The HTML output document displayed by the Web browser 248
33. IFS structure sample with directories and stream files. 281
34. FTP client/server validation request exit program flowchart 307
35. Work with Registration Information . 312
36. Work with Exit Programs display . 312
37. Add Exit Programs display . 313
38. The CUSTDISP display file . 317
39. Conceptual view of a DB2 CLI application . 350
40. Conceptual view of initialization and termination tasks 351
41. Transaction processing . 352
42. A sample CODE/400 editor window. 390
43. Code sample converted to RPG IV . 391
44. Sample code with indented view . 392
45. CODE/400 verifier error feedback . 393
46. A sample CODE Designer session for display file DDS. 394
47. VisualAge for RPG: Example user interface . 396
48. VisualAge for RPG: Example schematic diagram . 400
49. VisualAge for RPG: Initial state of server program . 406
50. VisualAge for RPG: Client program requests data. 407
© Copyright IBM Corp. 2000 ix

51. VisualAge for RPG: Server program sends data .408
52. The Integrated File System structure .414
53. Stream files .415
x Who Knew You Could Do That with RPG IV?

Tables

1. Call types and options . 59
2. Input parameters for the condition handler . 102
3. Condition token structure . 103
4. Parameters for the CEENCOD program to promote a message 104
5. Correspondence of C and RPG IV data types . 120
6. Required parameter group for QSNDDTAQ . 139
7. Optional parameter group 1 for QSNDDTAQ. 140
8. Optional parameter group 2 for QSNDDTAQ. 140
9. Required parameter group for QRCVDTAQ . 141
10. Optional parameter group 1 for QRCVDTAQ. 141
11. Format of sender information . 142
12. Optional parameter group 2 for QRCVDTAQ. 142
13. Error format ERRC0100. 143
14. Required parameter group for QMHRDQM . 144
15. RDQM0100 format . 145
16. RDQS0100 format . 146
17. RDQS0200 format . 146
18. Required parameter group for QMHQRDQDM . 147
19. RDQD0100 format . 147
20. Required parameter group for QCLRDTAQ. 148
21. Optional parameter group for QCLRDTAQ . 148
22. Required parameter group for QUSCRTUS. 154
23. Optional parameter group 1 for QUSCRTUS. 155
24. Optional parameter group 2 for QUSCRTUS. 155
25. Required parameter group for QUSDLTUS . 156
26. Required parameter group for QUSPTRUS. 156
27. Optional parameter for QUSPTRUS . 156
28. Required parameter group for QUSRTVUS. 156
29. Optional parameter for QUSRTVUS . 157
30. Required parameter group for QUSCHGUS . 157
31. Optional parameter for QUSCHGUS . 157
32. Required parameter group for QUSRUSAT. 158
33. SPCA0100 format . 158
34. Required parameter group for QUSCUSAT. 159
35. Required parameter group for QMHSNDPM . 174
36. Optional parameter group 1 for QMHSNDPM . 174
37. Optional parameter group 2 for QMHSNDPM . 174
38. Required parameter group for QMHRCVPM . 175
39. Optional parameter group 1 for QMHRCVPM . 176
40. Optional parameter group 2 for QMHRCVPM . 176
41. RCVM0100 format . 176
42. Required parameter group for QMHLJOBL . 177
43. JSLT0100 format . 178
44. Generic header format . 180
45. Input parameter section format . 181
46. Header section format . 182
47. LJOB0100 format . 182
48. Parameters for the socket() function . 192
49. Parameters for the setSockOpt() function . 193
50. Parameters for the bind() function . 194
© Copyright IBM Corp. 2000 xi

51. Parameters for the listen() function .194
52. Parameters for the accept() function. .195
53. Parameters for the connect() function. .196
54. Parameters for the read() function .198
55. Parameters for the write() function .199
56. Parameters for the select() function .211
57. Socket description bit values. .212
58. Parameters for the Fcntl function .224
59. Parameters for the API QtmhGetEnv .239
60. Parameters for the API QtmhPutEnv .240
61. Parameters for the API QtmhRdStin .240
62. Parameters for the API QtmhWrStout. .240
63. Parameters for the API QtmhCvtDB .241
64. Parameters for the API QzhbCgiParse .241
65. Parameters for the API QzhbCgiUtils .242
66. Parameters for the open() function .257
67. Data authority for the file owner .260
68. Data authority for the primary group .261
69. Data authority for *public. .261
70. Parameters for the close() function .262
71. Parameters for the write() function .265
72. Parameters for the read() function .268
73. Parameters for the write() function .269
74. Parameters for the Qp0lProcessSubtree() API .283
75. Required parameters for the Process a path name exit program290
76. Required parameter format for the VLRQ0100 exit point interface.304
77. Format of the accounting code parameter .305
78. Built-in functions for file operations .327
79. CLI function return codes .356
80. Parameters for the SQLAllocEnv function. .357
81. Parameters for the SQLAllocConnect function .358
82. Parameters for the SQLConnect function .358
83. Parameters for the SQLSetConnectOption function .359
84. Parameters for the SQLAllocStmt function .360
85. Parameters for the SQLPrepare function .360
86. Parameters for the SQLBindCol function .361
87. Parameters for the SQLBindParam function. .362
88. Parameters for the SQLExecute function .363
89. Parameters for the SQLExecDirect function .363
90. Parameters for the SQLFetch function .364
91. Parameters for the SQLTransact function. .365
92. Parameters for the SQLError function. .365
93. Parameters for the SQLFreeStmt function .367
94. Parameters for the SQLDisconnect function. .367
95. Parameters for the SQLFreeConnect function .368
96. Parameters for the SQLFreeEnv function .368
97. Trigger buffer content .381
98. PTFs for the OPTION *SRCSTMT and *NODEBUGIO features417
xii Who Knew You Could Do That with RPG IV?

Preface

This redbook is focused on RPG IV as a modern, thriving, and rich application
development language for the 21st century. It is written for those AS/400 system
programmers that are in the cusp between RPG/400 and RPG IV and are looking
for hints and tips to make the move forward worth their while. This book promises
to drop little golden nuggets of information in the form of code samples and style
guidelines. Picking up each golden nugget will lead you step-by-step down the
path that will eventually allow you to take full advantage of RPG IV and the
Integrated Language Environment (ILE). Even the most experienced RPG IV
programmer will find something useful in this redbook.

We know you have been busy running your business instead of following RPG IV
enhancements. So, we have included a timeline outlining the history of the RPG
IV language and all the technical updates to the language since V3R1. You can
use this timeline to assist in determining which of the many enhancements you
can take advantage of to solve the real business problems today.

In V3R2 and V3R6, RPG IV added support for user-defined subprocedures
marking the defining point at which RPG IV can truly be considered a modern
programming language. This redbook shows you both the style and function of
how to make the subprocedures work for you.

One of the keys to the power of RPG IV is in its ability to prototype any system
function and make things happen! This redbook shows you how to use RPG IV to:

• Use the TCP/IP sockets APIs
• Read and write directly to the Integrated File System (IFS)
• Use dynamically server HTML Web pages with the CGI interface
• Exploit program-to-program communications with data queues (DTAQ)
• Directly access user spaces (USRSPC)
• Communicate with the system and users via message handling
• Write exit programs (anonymous FTP)

The SSERVER3 and SCLIENT3 example program as an example of multiple
I/O between one server and multiple clients was not correct and has been
updated. The updated sections are marked by change bars in 5.5.5,
“Communication with multiple sockets (multiple I/O)” on page 210 and 5.5.6,
“Example of multiple I/O” on page 215.

In addition, we updated the RPGISCOOL library SAVF found under Additional
materials on the IBM Redbooks Web site. See Appendix A, “Example RPG IV
programs on the Web” on page 411, for instructions to download these
examples. The source files in library RPGISCOOL file SCKSRC that have been
updated are:

• SCKSELF
• SCKCPY
• SCLIENT3
• SSERVER3
• SCLIENT3B
• SSERVER3B

Update notice
© Copyright IBM Corp. 2000 xiii

RPG IV and DB2/400 have always enjoyed a tight integration between language
and database. Now, learn how to exploit the new CLI database APIs and access
your business data with embedded SQL, stored procedures, trigger programs,
and commitment control (CC).

Modern tools can significantly improve your productivity. This redbook also briefly
introduces such tools as CODE/400 for rapid server-side development and
VisualAge for RPG for rapid client-side RPG in a client/server environment.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Rochester Center.

Brian R. Smith is a Senior AS/400 Specialist in the
International Technical Support Organization in IBM
Rochester. The first half of his career was spent in
design, coding and testing on the System/38 and
AS/400 in the area of communications. He then
"jumped the wall" into technical marketing support in
1990 to pursue the life of teaching and writing.

You can reach Brian on the Internet at
brsmith@us.ibm.com

Martin Barbeau is a Software Support Specialist in
Canada. He has 10 years of experience working with
AS/400 systems and has worked for IBM for three
years. His main areas of expertise include system
management, application development (mainly using
RPG and DB2/400), availability/recovery and OS/400
problem determination. Martin is the co-author of the
IBM redbook Complementing AS/400 Storage
Management Using Hierarchical Storage Management,
SG24-4450.

Susan Gantner has spent over 20 years in the field of
application development. She has recently joined Hal
North America as a Senior Consultant for the Education
Group following a 14-year IBM career. Prior to IBM,
Susan developed applications for corporations in
Atlanta, GA, working with a variety of hardware and
software platforms. In 1985, she joined IBM as a
Systems Engineering Specialist for the System/38. She
worked in the Rochester Lab for several years
supporting and teaching AS/400 customers in the areas
of application development and database. She later
moved to the IBM Toronto laboratory to continue her

teaching and customer support roles for the languages and development tools.
She is a regular speaker at COMMON and technical conferences for AS/400
customers around the world. She can be reached at susan.gantner@halinfo.it
xiv Who Knew You Could Do That with RPG IV?

Jon Paris is a Senior Consultant with the education
group of Hal North America, based in Toronto, Canada,
where he specializes in AS/400 Application
development education. Jon has accumulated over
thirty years experience in the computer systems field.
He has also published a number of articles on AS/400
application development.

Prior to joining Hal, Jon worked for the IBM Toronto
Laboratory where, among other things, he was one of
the original "fathers" of the RPG IV language.

Subsequently, he worked with the Lab’s Application Development Market Support
team. In this role, he was responsible for producing educational, support and
services materials for use throughout the world. Jon’s area of expertise was in the
AS/400 programming languages and development tools, including CODE/400,
VisualAge for RPG, RPG IV, COBOL, and VisualAge for Java. Jon presented on
these and other related topics at User Group meetings, IBM conferences, and
other events around the world. He was also active in preparing and delivering
education to IBM Business Partners on the latest trends in AS/400 Application
Development. You can reach him by e-mail at jon.paris@halinfo.it

Zdravko Vincetic is an AS/400 Systems Specialist at the
AS/400 Systems Support Center in IBM Slovenia. He has
27 years of experience in the IBM S/3, S/38, and AS/400
field, all with IBM, and spent most of this time teaching
IBM classes. His areas of expertise include application
development, database design and systems
management. He holds a Bachelor of Science degree in
Mechanical Engineering from University in Sarajevo and
a Masters degree in Informatik from University in Zagreb.

Vladimir Zupka is a freelance consultant and
programmer providing services for IBM AS/400 systems
in Czech Republic and other countries. He passed state
examinations on the Czech Technical University (CVUT)
in Prague as a land-surveyor engineer. He has 34 years
of experience in programming on various computers
from relay, bulb, or transistor based machines through
Univac 9300 and IBM 370 to AS/400. His areas of
expertise include system programming in machine,
assembler, and high-level languages, compiler
development, and business application programming. He

published a book on RPG II programming in 1985 in Prague. He has been giving
lectures about the AS/400 system, especially programming in RPG language. He
became an IBM Business Partner in 1997. You can reach him by e-mail at
vzupka@comp.cz
xv

Thanks to the following people for their invaluable contributions to this project:

Paul Tuohy
ComCon, AS/400 consulting company - CEO

Simon Coulter
FlyByNight Software Australia - AS/400 Software Engineer

Ivy Woo
Hal North America Limited

Ed A Van Weeren
IBM Netherlands - BAAN/IBM International Competency Center

Yvonne Griffin
IBM Rochester Lab

John Kasperski
IBM Rochester Lab Transport Services - Sockets

Mark Megerian
IBM Rochester Lab - CLI Database and Threads

Mel Rothman
IBM Rochester AS/400 Custom Technology Center - AS/400 RPG, AS/400 CGI
Programming

Hans Boldt
IBM Toronto Canada Lab - ILE RPG Development

Barbara Morris
IBM Toronto Canada Lab - RPG Compiler Development

Karan Ratz
IBM Toronto Canada Lab - RPG CPS Development

Claus Weiss
IBM Toronto Canada Lab - VisualAge RPG Development

Brian Parkins
IBM UK Education & Training - AS/400 Instructor

Bob Cozzi
Independent Consultant

Sandro K. Pires
Itec S/A Brazil - System Engineer, AS/400 Technical Support Group

Bryan Meyers
400 School
xvi Who Knew You Could Do That with RPG IV?

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 433 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xvii

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

xviii Who Knew You Could Do That with RPG IV?

Chapter 1. An introduction to RPG IV

The RPG IV language was introduced in Version 3 Release 1 (V3R1) of OS/400
and is still a relatively new language. For a complete history of the enhancements
made to the RPG IV language, see 1.3, “Evolution of the RPG IV language” on
page 9. This section also includes a quick look at the future of RPG and of the
RPG programmer on the AS/400 system.

A common source of confusion to the RPG/400 programmer is the relationship
between RPG IV and the Integrated Language Environment (ILE). ILE was
introduced to the AS/400 in Version 2 Release 3 (V2R3). Moving to RPG IV does
not necessarily require the use of, or the understanding of, the Integrated
Language Environment (ILE). See 1.4, “The relationship between the RPG IV
language and ILE” on page 14, for an explanation.

In today’s business environment, certification is becoming increasingly important
and RPG certification is no exception. Find out more in 1.5, “IBM Certified
Specialist AS/400 RPG programmer” on page 16.

1.1 Why this book on RPG IV now?

The last redbook that specifically focused on RPG was published in April 1995.
This book is called Moving to Integrated Language Environment for RPG IV,
GG24-4358. It is still in print and averaged 1500 download hits per month in
mid-year 1999! We have all learned so much about how to write RPG IV
applications in the past four years that it was time to take the coding pen in hand
and show off what can be done with this updated language.

Other redbooks have followed. In September 1996, IBM delivered an application
development tools redbook entitled: AS/400 Applications: A Fast and Easy Way
to Install, Set Up and Work with VRPG and CODE/400 (ADTS CS), SG24-4841.
This redbook did a great job on just what the title says it does. In fact, it is still a
great guide to VisualAge RPG and CODE/400.

Then, in January 1997, we published another redbook on application
development that focused on the Y2K (Year 2000) problem: AS/400 Applications:
Moving to the 21st Century, SG24-4790. Most of the application programming
examples found in this book were written in RPG.

Is RPG IV a dead language? The answer to this question cannot be as simple as
yes or no. The truth to the matter lies in the fact that all languages rise in
popularity, plateau, and then over time, decline. This redbook provides examples
that allow you and your team to extend that plateau by making most of what you
have now. Nobody said that RPG’s plateau should not last for a thousand years!

1.2 An interview with leading industry experts

"Rumors of my death have been greatly exaggerated"

While this phrase originated with Samuel Clemens (also known as Mark Twain), it
could equally well be said of the RPG programming language. We have been
hearing the cry "RPG is dead" for years. Yet here we are at the beginning of the
21st century and RPG remains with us, as strong as ever. Why is this?
© Copyright IBM Corp. 2000 1

We decided to talk to a number of AS/400 experts to get their opinions. First, we
introduce you to each of our experts:

• John Carr is President of EdgeTech, a Virginia corporation. He has 17 years
of experience working with the IBM Midrange Environments. His expertise lies
in helping companies develop and implement programming standards and
methodologies.

John has aided clients in improving their proficiency and efficiency with the
Midrange Environments. In this regard, John has taught numerous classes for
EdgeTech focused on application system development including RPG/400,
SQL/400, ILE, ILE/RPG, VRPG, and Relational Database to name a few.

John has served on various IBM Advisory Councils concerning ILE/RPG,
VRPG, and the Future of the AS/400 system. He is currently working with IBM
on a Certification program for RPG. He has written articles for COMMON's
NEWS COM magazine on the transition from RPG to OOPs and has been a
popular speaker at COMMON for the past 7+ years.

• Simon Coulter is a principal of FlyByNight Software, an AS/400 consulting
company based in Melbourne, Australia. He specializes in technical
programming and AS/400 programming education. He is currently involved in
an AS/400 project using sockets and Telnet programming. Simon was an
AS/400 Software Engineer with IBM Australia for eight years and has 13 years
of experience in the computer industry. He is a regular presenter at COMMON
Australasia and helped produce the redbook Building AS/400 Applications
with Java, SG24-2163.

• Bob Cozzi has been involved in the midrange IT community since 1977. He
has been a member of COMMON, the IT industry's largest user group, since
1980. He has worked with several end-user firms and has run his own small
business. In addition, Bob published the midrange industry's first technical
magazine, Q38 Technical Journal and later Midrange Computing magazine. In
1988, he wrote and published the first book on RPGIII programming The
Modern RPG Language and has since written five additional titles including
the popular The Modern RPG IV Language book, which along with the original
title continues to be the best selling midrange book ever published.

In 1995, Bob left his publishing and computer research firm to pursue other
interests. Since then he has acquired an interest in Pioneer Rocketplane
which is building the next generation space shuttle. He continues to maintain a
strong interest in RPG and the AS/400 system. He owns and maintains the
RPG Developer Network, a Web site exclusively for RPG programmers
(http://www.rpgiv.com), and lectures on RPG IV at customer locations
throughout North America.

• Bryan Meyers has been a longtime Senior Technical Editor for NEWS/400
magazine. Most AS/400 technicians know Bryan from his regular articles
appearing in NEWS/400, and his books and speaking tours. He is the author
of the books RPG/IV Jump Start, Starter Kit for the AS/400, Control Language
Programming for the AS/400, VisualAge for RPG by Example, and several
others.

Bryan presents NEWS/400 Technical Seminars across North America, on
many topics including RPG IV, VARPG, and the Integrated Language
Environment (ILE). Bryan is the Vice President of Education for the Powertech
Group, heading its 400 School division.
2 Who Knew You Could Do That with RPG IV?

• Russ Popeil is the Northeast Area Consulting Practice leader for Avnet
Computer, a national IBM business partner, Russ is based in New York City
and has over 18 years experience on the IBM midrange platform. He is a past
President of the Long Island Systems Users Group and a frequent speaker at
COMMON, and other local user groups.

Russ is the author of the book RPG Error Handling Technique: Bulletproofing
your applications. He has also written many articles for NEWS/400 and
Midrange Computing magazines.

Russ is currently working with IBM as a member of the IBM certification test
writing teams, for RPG and AS/400 Technical Solutions. He is also on the IBM
Toronto language labs RPG advisory council and a member of the IBMs
J.D. Edwards competency center business partner internship team.

• Paul Tuohy has worked in application development on IBM midrange for 20
years. He worked as a programmer/analyst for five years before taking on the
role as IT manager for Kodak Ireland. After three years, he returned to
application development and became Technical Director of Precision
Software, a successful Irish software company specializing in applications in
Shipping and Human Resources. After eight years with Precision Software, he
set up ComCon, an AS/400 Consultancy company. Paul now spends most of
his time presenting AS/400 courses. Generally, he is located at the IBM
Education Center in Dublin, Ireland, where he has been specializing in
courses in programming and application development since 1988.

Paul is the author of the article "Re-engineering AS/400 Legacy Applications",
published by Midrange Computing.

And so our interview begins ...

How old are you?

John: I'm 47

Simon: 36

Bob: 40

Bryan: Old enough to make that a rude question ... 51

Russ: 43

Paul: 18 going on 43

Was RPG your first programming language?

John: Yes.

Simon: No, I first learned Basic and 6502 Assembler on a BBC Micro
(self-taught), then RPG II (1 week training, no practice), then
Assembler and INFORM (a 4GL of sorts) on an ICL System 25 (1
week of training, six months or so of practice, then RPG III on
System/38, self-taught MI, PL/I, COBOL, FORTRAN, C, Smalltalk,
and now Java (also some dabbling with AWK, Unix scripts, BAT
files, CMD files, and Rexx along the way). The language is
immaterial; you're either a programmer or you're not.

Bob: First learned, COBOL, first used, RPG.

Bryan: Yes, unless you count JCL.

Russ: Yes.
An introduction to RPG IV 3

Paul: No. My first "real" language was DIBOL. This was on DEC
equipment and was like a cross between Basic and COBOL.

When did you write your first RPG program, and what version of the language?

John: 1984 RPGII on a System/34,

Simon: RPG II on a Control Data Cyber something-or-other as part of my
training. Although, first use in anger for a business application was
RPG III.

Bob: 1977 in RPGII for the System/32.

Bryan: I started with an early version of RPG II. Tables were a fairly new
construct at the time.

Russ: 1982 in RPGIII on the System/38.

Paul: Around 1979 on the System/34. So it would have been some form
of RPG II.

What did your first RPG program do?

John: A report, what else?

Simon: Simple reporting in RPG II. The first RPG III application was an
interface between JDE general ledger on S/38 and StarBase
financial application (AP/AR) on ICL Sys25. This is where I
discovered I was better suited to systems work rather than
application work.

Bob: Print labels for packages distributed to McDonalds stores, and it is
still in use today.

Bryan: During my college days, I worked as a disc jockey at a local radio
station at one of the first broadcasting companies to use a
computer to schedule programs and commercials. Most of my work
was in that area. The first program I specifically remember sorted,
selected, and listed Top 40 hit songs that were keypunched onto 80
column cards.

Russ: I worked at a hospital and we printed a report of device locations.

Paul: Heck if I can remember. I am sure the word "print" came
somewhere.

Is RPG dead? If so, why? If not, why not?

John: Ah Hmm. It's as dead as COBOL. And it's as dead as it ever was.

Simon: No, it's not! For the same reasons as COBOL not dying. Too much
investment in existing code compounded by lack of interest in better
methods by "grunt" RPG programmers.

Bob: No, it is still the only business-oriented language that is in wide-use
on the AS/400. Existing applications will need to be enhanced and
maintained for another 20 or more years. In addition, it provides a
solid, reliable back-end language to GUI-based tools, such as Java.

Bryan: I find it hard to believe that billions of lines are code are going to
fade away easily anytime in the foreseeable future. RPG programs
will coexist with other languages in the IBM midrange for some time
to come, I think.
4 Who Knew You Could Do That with RPG IV?

Russ: It is not dead and won't be for a very long time. There is too much
invested in existing RPG code and most shops do not want to be
multi-lingual.

Paul: A definite no! For RPG to die, one of two things has to happen.
Either the AS/400 is discontinued or companies decide to
completely re-write their applications in another language. The
former is highly unlikely (although IBM has surprised me in the
past), and it would be extremely difficult to make a business case
for the latter. The impact of a language like Java will impact the
interactive side of RPG. The days of the green screen may be
numbered, but I think one would be hard pushed to justify re-writing
all of the business rules, etc.

What percentage of your RPG work is done in RPG IV? If the answer is less than
100%, why?

John: 100% since V3R1. During the Y2K conversion, we converted all
inhouse programs to RPG IV, along with using all Date/Time data
types in our files.

Simon: 25% because I don't do application programming. Most of my time
is spent writing systems code and the usual choice is C, not
because I particularly like C, but it is more acceptable as a systems
language. I use RPG IV for utilities or programs for sites that only
have RPG. I keep my hand in by teaching RPG for IBM Learning
Services.

Bob: 100%

Bryan: Less than 100%. Why? All my new RPG work is done in RPG IV.

Russ: I write 100% in RPG IV.

Paul: 120%. The additional 20% is because I also use ILE. I can't see any
reason for working on an earlier version of RPG.

What was the biggest problem that RPG IV solved that you could not have
accomplished with older versions of the language?

John: Where do I start? Interfacing with UNIX APIs and C APIs. Writing to
the IFS. Doing Date Math. Otherwise, it makes things tons easier,
faster, clearer, etc. Triggers are simpler. There is no 256 field length
limit, for example. Softcoding functions using BIFs (Built-in
Functions) like %LEN, %ELEM, for example, cuts down on
maintenance overhead. Procedures, prototyping, writing our own
"Opcode" like functions.

Simon: Encapsulation! Locally scoped data and parameter passing to
procedures are worth their weight in gold. Of course, sufficiently
disciplined programmers could accomplish the same result with
RPG III. But RPG IV makes it easier for someone who knows what
they are doing to create black boxes for the rest of the group to use.

Bob: Gave us the ability to use contemporary programming techniques.

Bryan: Being able to use functions and write procedures that I can easily
incorporate into my programs has made many programs more
modular, flexible, and maintainable. I think that's the single biggest
improvement in the language.
An introduction to RPG IV 5

Russ: Using the evaluations operation allowed string handling to be a
breeze.

Paul: I don't know if RPG IV solved any "problems". What it did is make
viable programs that would not have been previously considered
due to the length of time that it would take to develop them. This is
mainly due to ILE and subprocedures.

What do you think are the best features of RPG IV? What is the worst?

John: The best are the SIMPLE I/O functions. One F-Spec for an
externally defined file would equal how many in other languages?
The worst are mostly things outside the language itself, for
example, lack of a GUI isn't RPG's problem exactly.

Simon: Free-form expressions, built-in functions, procedures, and the
PREFIX keyword are the best features. The worst is probably
continued support for archaic coding methods, for example,
conditioning indicators, resulting indicators, COMP, CMPxx, and
GOTO. LEAVE, ITER, and LEAVESR are in there too, but are more
tolerable than GOTO.

Bob: The best is Procedures. Unnecessary "tick marks" such as the
COLON, I would have used either a blank (to make it the same as
DDS) or a comma. The "E" on externally defined data structures is
another example.

Bryan: D-specs, expressions, built-in functions, and of course procedures
are the best features. It's difficult to find a worst feature, but still
forcing tables to start with TAB seems unnecessary. Putting
compiler options in the source is a good idea, but it's implemented
in a half-hearted fashion. Missing features include an
increment/decrement operator.

Russ: The best feature is Procedures. The worst is?

Paul: The two I have found most useful are mixed case (believe it or not)
and subprocedures. Any of the bad features can just be ignored.

Do you have plans or have you already undertaken a Java, C, or C++
development project?

John: Java, no, not yet. but it's coming. I guess after the first of the year,
mostly in conjunction with our Lotus Domino applications at first I
think. On the other hand, there are no plans at all for C.

Simon: I've done a few projects in C. C++ is a waste of time. If you really
want to do OO, use Smalltalk. Java is on the cards, but not much is
happening yet in Australia with AS/400 Java. When I can take time
out from earning a living, I'll implement some of the ideas I have for
AS/400 Java.

Bob: Have already done this.

Russ: No plans yet.

Paul: Have played around with Java, and a Java project is planned.

Can you name the individual or group that has the most impact on your
professional life?
6 Who Knew You Could Do That with RPG IV?

John: Early hard bosses. "Do it right the first time!!!"

Simon: Not one individual, but more of a gestalt of various teachers and
colleagues and of course, eight years of writing system code for
IBM has had a major influence on the way I engineer
software—people like Bill Davidson and Dick Bains at Rochester.
Bob Cozzi and Greg Veal have also had some influence on my
programming. I subscribed to the Q38 Journal, and most of what
they said made sense. P. J. Plauger, Donald Knuth, Kent Beck, and
others also.

Bob: IBM, unless you mean groups like COMMON, then it is COMMON.

Russ: COMMON and LISUG (Long Island AS/400 User Group).

Paul: Too many to mention them all. As a group, the students that attend
my courses continue to teach me. I have worked with some very
good technical people in Precision Software, and the best teacher I
have had is Jon Paris.

If you had the power to add one feature to RPG IV. What would it be?

John: Well I have gotten most of the things I have lobbied for over the last
few years.

Simon: User-defined data types. These would improve robustness of
interfaces by allowing prototyping to verify correct structure types
are being passed to procedures and programs.

Bob: Keyword support on the Output specifications.

Bryan: I like to see an increment (++) and a decrement (--) operator for
expressions.

Paul: Can't choose just one, although the ability to define keylist on the
D-Spec would probably edge the others out. All that are left are
fairly minor. The major ones have already been, or are about to be,
incorporated. Full free format would be my major requirement, but
the new CF spec will take care of that.

If you were IBM, what would you do to encourage more people to switch to RPG
IV?

John: Reference the language in their publications and announcements.
Every thing spoken about RPG from IBM gives the tone that they
are ashamed of the language and just want to have everyone forget
it. Develop a strong affinity with RPG IV and Java. Provide a native
GUI for RPG.

Simon: Announce end-of-support for RPG II, III, and 400. Brute force but
probably the only way that'll work, unless we get some good
marketing that makes RPG IV appear appealing. But IBM can't
market, so that won't happen. If they could, we'd all be running
OS/2 instead of suffering windoze (although I'm sticking with OS/2).
It would also help if IBM encouraged the major ERP vendors to start
using RPG IV, but they are more likely to jump into Java or use C
simply to gain cross-platform benefits from any major application
re-work.

Bob: Make them want it, and then make them not be able to live without
it. That is, stop enhancing it with an apparent attitude that you're
An introduction to RPG IV 7

doing us a favor (and start pushing Bob Cozzi's RPG IV book
more!). It needs to be pushed as solving solutions for contemporary
problems. Like a back-end to a Java front-end. Instead, we're
seeing "Java, Java, Java" without a goal other than to get people to
use Java. We (RPG programmers) have seen and heard this
before, and we just don't buy into it. So we end up feeling left-out
once again. And yet, our little RPG language keeps running and
running. Remember when everybody was pushing Visual Basic,
then C++ for a month or two? If we can give managers clear
examples of RPG IV being used to solve their problems, then they
will give the okay to use it.

Bryan: I'd give them a clear direction on the future of the language, and
explain how it will fit into their future application development. I'd
quit trying to scare them into thinking that RPG is a dead end for
their careers. I’d make them understand that they don't need to
(and probably shouldn't) abandon one language to begin taking
advantage of another.

I'd also take every opportunity to have RPG taught in schools,
colleges, and private training facilities. Rather than forming an
entirely new separate education structure, take advantage of the
facilities that already exist, and that already have students. Give
them support, give them hardware, give them software, give them
class materials, and give them encouragement. The investment
would be well worth it in the long run.

Russ: Advertise the ease that one can get up and running in RPG IV,
along with the productivity enhancements that will benefit the users
of RPG IV.

Paul: Make it crystal clear that RPG IV does not mean flipping burgers.
Identify it as part of the road to Java. Incorporate the tools to do the
work. Code/400 should be incorporated as a standard part of
Application Development Tools.
8 Who Knew You Could Do That with RPG IV?

1.3 Evolution of the RPG IV language

The RPG IV language still relatively young, but it has grown dramatically in the
few years since its introduction.

1.3.1 Version 3 Release 1 (V3R1)
The RPG IV language was introduced at Version 3 Release 1 (V3R1) of OS/400.
At its first release, the new RPG language represented a significant improvement
over the previous RPG languages. The following list contains some of the most
significant enhancements in the first release:

• Expanded names (to 10 characters)
• Mixed case source
• Free-form expressions (arithmetic, string and logical expressions)
• Support for date and time data types, including duration calculations
• A new D specification to define all types of internal program data
• Built-in functions
• Many previous language limitations raised or removed (Some examples would

be the maximum number of files and the maximum size of arrays and data
structures.)

1.3.2 Version 3 Release 2 (V3R2) and Version 3 Release 6 (V3R6)
The next release of the RPG IV compiler was at V3R2 and V3R6. Both of these
releases contained an equivalent RPG IV compiler function. As significant as the
new language syntax and features were at V3R1, this second release introduced
the potential for an even more dramatic change to the structure of modern RPG
IV programs. The introduction of prototyping and the ability to write RPG IV
subprocedures changes the way RPG IV programs may look in the future. The
ability to prototype calls to functions in the operating system expands the
capabilities of RPG programmers to include the entire C language function library
and other system functions previously only available to C programmers.

The following list contains the most significant enhancements in this release.
While the number of items seems small in comparison to other releases, the
significance is far greater than any other RPG IV compiler release to date.

The RPG programs and AS/400 database libraries used in this redbook are
available for you to download from the Internet. These examples were
developed using an AS/400 system with OS/400 and the RPG compiler
(5769RG1) at V4R4. See Appendix A, “Example RPG IV programs on the Web”
on page 411, for instructions on how to download the source.

Some of the programming examples use functions and features of the compiler
and OS/400 system that will only compile and run at V4R4 of OS/400. Others
may run on a V3R2 or V3R7 system and above with or without minor
modifications. Use this section to help identify those enhancements to the RPG
IV language that may prevent you from simply compiling the example programs
without any modifications.

Examples in this book are based on V4R4
9

• User defined RPG IV subprocedures

• Prototyping for call interfaces, including support for return values from
functions

• Free-form CALLP operation code (Call with Prototype)

• Cycle-free option for modules containing only subprocedures

1.3.3 Version 3 Release 7 (V3R7)
At V3R7, the RPG IV compiler grew yet again in function. Note that V3R7 (and
later) enhancements can only be used on AS/400 RISC systems. While perhaps
less significant in the grand scheme of things, this list of enhancements
represents the fulfillment of many long-standing requirements and ease of use
features:

• Null value support for database fields
• Null terminated string support
• Floating point data type
• Better control over precision in free-form expressions
• New built-in functions for string editing (%EDITC and %EDITW)
• %SCAN built-in function
• Allocate and deallocate storage by operation code
• Ease of use enhancements for date and time fields
• Conditional compilation directives embedded in the source
• Nesting support for the /COPYstatement
• Longer names (up to 4096 characters!)
• Pointer arithmetic support

1.3.4 Version 4 Release 2 (V4R2)
In Version 4, with new OS/400 releases starting to appear at much shorter
intervals, the RPG IV compiler took advantage of the option to skip a release of
the operating system. That is, there was no new RPG IV compiler for V4R1. The
V3R7 RPG IV compiler worked with V4R1. However, at V4R2, the compiler made
up for the wait by introducing another set of significant enhancements to the
language.

The most significant enhancements in V4R2 surround the use of and
replacement of numbered indicators in RPG IV. As of V4R2, it is now possible to
write most RPG IV programs without the use of any numbered indicators (such as
*IN10 through *IN99). Named indicators or the use of new built-in functions in
place of indicators become the preferred method of communicating with display
and printer files, as well as dealing with input/output operations. The following list
contains the major enhancements for V4R2:

• Indicator data type (N)

• Ability to map DDS numbered indicators to named indicators

• Built-in functions for I/O and other types of condition handling (for example,
%Error, %EOF, %Open, %Found)

• Support for varying length fields

• Compiler options can be embedded in source members on the H specification

• Enhanced external name support for imported or exported data items and
procedures
10 Who Knew You Could Do That with RPG IV?

1.3.5 Version 4 Release 4 (V4R4)
Version 4 Release 3, like V4R1, included no new RPG IV functions. At V4R4,
many enhancements were made to add new functions to the compiler. The single
biggest enhancement at this release was the ability to create thread safe RPG
procedures.

Thread safety allows RPG procedures to be called by threaded applications,
written in Java, for example. This will ultimately allow a tighter integration
between Java applications and RPG applications on the AS/400 system. It also
will allow for more possibilities of reusing RPG code within applications that are
written in Java or other threaded environments, such as Domino or C++. The
following list includes the major enhancements to RPG IV in V4R4:

• Thread safety enabled by option Thread(*Serialize)

• Ability to call RPG procedures in service programs from Java via Java Native
Interface (JNI)

• New integer and Unicode data types

• EVALR operation code (Evaluate with right adjusted result)

• LEAVESR operation code (transfer control to ENDSR operation)

• New FOR loop syntax

• *Next option on Overlay keyword on D specification for Data Structure
subfields

• New built-in function options: %XFOOT, %DIV, %REM

• Initialize a field to contain the user’s ID

• Initialize externally defined data structures to the default values specified in
DDS

• Ability to request matching source sequence numbers and program
statements

• Ability to request I/O statements to represent only 1 step in a debug session

1.3.6 The future for RPG IV
As the lists in the previous section indicate, there has been significant investment
made in enhancing the RPG IV language since its inception. That trend is
planned to continue into the foreseeable future. A long and significant list of

The last two enhancements above (relating to source statement numbers and
debugging I/O statements) were considered so important for customer
satisfaction, they have been made available in earlier releases via PTF. To get
this support in releases prior to V4R4, you must install the PTFs necessary for
your release. You must also include the keywords OPTION(*SRCSTMT *NODEBUGIO)

on the H specification in your programs. SEU may report a syntax error for this.
If you ignore the error and save the source, the compiler will accept it. For
specific PTF number information, see Appendix C, “PTFs for *SRCSTMT and
*NODEBUGIO” on page 417.

Special notice
11

potential enhancements are in the works by the compiler developers for future
releases and versions of the RPG IV compiler.

One significant area where changes are likely to continue relate to making it
easier to integrate RPG and Java. Since Java support on the AS/400 system (and
the IT industry in general) is rapidly growing, the ability to integrate the RPG code
that has been reliably serving our business application requirements for years is
critical to the smooth implementation of these new technologies.

While it is quite possible to call between RPG and Java applications today (using
the program call from the AS/400 Toolbox for Java or the JNI support in V4R4, for
example), there is still much room for improvement in making the integrated
support between the languages much easier and more robust. Enhancements in
this area are important to the future utilization of both languages and are a high
priority.

It is also important to continue the growth of RPG as a language in its own right.
With as many dramatic enhancements as we have seen in the past releases,
there is still room to continue to evolve the language as programmers evolve in
their use of the language.

The RPG development team in the IBM Toronto laboratory is keenly aware of the
need for and the advantage of listening to the RPG programming community to
help steer the direction of their language of choice. RPG programmers will see
even more dramatic enhancements in both the near term and long term that will
enhance their productivity and their programming style options in RPG. Many of
these enhancements have been guided by input from RPG programmers around
the world.

1.3.7 A future for RPG programmers
As discussed in the previous section, the RPG language has a long and bright
future ahead. How can today’s RPG programmers position themselves, their
company, and their applications to take full advantage of what RPG has to offer
today and tomorrow?

Reading this book is a good start. Wherever you happen to be on the scale of
taking advantage of the modern RPG IV language, this book has something to
offer. For example, if you have not yet moved your skills or your applications to
RPG IV, you will find some information here to help you see the advantages of
doing so (or justify the move to your management). For those already using RPG
IV and perhaps even using the more advanced features, such as subprocedures
and using C functions via RPG prototypes, you will find some examples of
exploiting these features further and options to improve your coding style.

1.3.8 A roadmap
It may be helpful to suggest a roadmap for programmers looking to move from
pre-RPG IV environments to taking advantage of today’s RPG language.

1.3.8.1 Step 1: RPG IV
The first step for those programmers whose skill and applications are not yet
moved to RPG IV is clear. If your applications and programming skill are still
primarily or exclusively in RPG/400 (or RPG III, as it is sometimes called) or
12 Who Knew You Could Do That with RPG IV?

RPG36, now is the time to move forward. Learn RPG IV and move your
applications to the new language as soon as possible.

As discussed in 1.4, “The relationship between the RPG IV language and ILE” on
page 14, moving to RPG IV does not necessarily require the use of or the
understanding of the Integrated Language Environment (ILE). Converting your
code to RPG IV is simple, and there are many options of tools to help you do this.
The productivity and maintainability gains alone make this step a good
investment. And, it provides the required foundation for further steps.

To enhance your skills in RPG IV, there are many books, publications, classes
offered by IBM and others, tutorials, and conferences that will provide help in
understanding the differences between RPG IV and earlier versions of the RPG
language. A few examples of these are listed in 1.6, “RPG IV sources on the
Web” on page 19.

Once in RPG IV and throughout your journey, adopt a consistent style of coding
in RPG IV. The style guide included in this book provides a good place to start in
developing your style for RPG IV coding. While it is typically not feasible to
rewrite all your existing code to meet the requirements of your style guide,
certainly new code and enhancements can use the style features that you decide
work best for your environment. Some of the conversion tools available on the
market will also help in making some basic style adjustments, such as the use of
upper and lower case, the use of the D specification for stand-alone work fields,
and the conversion, where possible, to the use of free-form operations, such as
EVAL.

It is important to avoid the pitfall of using RPG IV in the same style as you have
used with previous RPG languages. Keep up with the latest techniques and
enhancements of the compiler and continue to enhance your style and coding
standards to fully exploit all that this language has to offer.

1.3.8.2 Step 2: Modularization using ILE
After moving your applications to RPG IV, begin exploring the potential use of the
Integrated Language Environment. ILE enhances your ability to write in a
modular style and is required for many of the advanced features of the RPG IV
language. ILE Service Programs also provide the foundation for accessing most
of the more modern system functions. It is also the foundation of integrating with
Java.

This redbook will help you understand many of the basic ILE concepts and the
features of RPG IV that require the use of ILE (and their advantages). In addition,
there are a some other books, manuals, classes, articles, seminars, and
conferences that can help you understand how to implement ILE in your
applications. A small sampling of some of these is included in 1.6, “RPG IV
sources on the Web” on page 19.

Look for opportunities to modularize your application code. Some examples of
ways to do this are included in various chapters in this redbook. Modularization,
when done well, usually results in higher productivity and reliability of the
application logic. Many developers have also experienced improvements in
application performance, primarily because of the ease of replicating
performance improvements in modules used in multiple programs.
13

1.3.8.3 Step 3: Exploit database features
Another step to consider along this road is to look for opportunities to include
database features to either replace or add reliability to parts of your application
logic. This step may come before, after, or even simultaneously with the ILE
implementation step mentioned above.

Referential Integrity Constraints, for example, can be implemented in the
database more reliably than in application logic, which depends on all
programmers implementing the logic correctly and consistently. Likewise, much
application logic could be replaced or made more robust by adding Check
Constraints to database fields to implement functions such as range or value list
checking.

1.3.8.4 Step 4: Modernize the user interface
Many, though not all, applications can be improved in usability or function by
adding a graphical or Web-enabled user interface. For cases where a user
interface that goes beyond the text-based capabilities of DDS display files is
required, there are many options available. The type of user interface and the
languages and tools used to create it depends on many factors, such as
workstation type and variety, skills available among the developers, and whether
universal access (via the Internet, for example) is required.

Java is a popular choice for user interface code and can be developed in many
ways with a variety of development tools from which to choose. Some methods of
interaction between Java and RPG applications are discussed in another redbook
Building AS/400 Applications with Java, SG24-2163.

However, do not overlook other ways to Web-enable applications as well. Writing
CGI bin programs in RPG, for example, may prove a simpler satisfactory solution
for some application needs. See 5.6, “Writing CGI programs using RPG IV” on
page 235, of this book for examples of Web-enabling RPG applications using
CGI.

VisualAge for RPG is another potential vehicle for reusing your available RPG
code and skills to develop graphical interfaces to your applications. Since the
latest release of VisualAge for RPG generates Java source code, it can be used
as a tool to write and maintain the interface logic in RPG, while deploying the
application to a wide variety of user client choices. See Chapter 8, “VisualAge for
RPG as a GUI for RPG applications” on page 395, for more information about
using VisualAge for RPG to generate user interfaces to your RPG applications.

1.4 The relationship between the RPG IV language and ILE

A common source of confusion for those considering a move to RPG IV is about
the relationship between the RPG IV language and the Integrated Language
Environment (ILE). Because RPG IV is an ILE-enabled language, it is possible to
create an application in RPG IV that fully exploits the capabilities of ILE. In
addition, some of the features of the RPG IV language (subprocedures, for
example) require the use of ILE. However, it is also quite possible to use the RPG
IV language in a form that does not require the use of any ILE-specific system
features.
14 Who Knew You Could Do That with RPG IV?

Many customers that find using RPG IV in a "non-ILE" fashion is a good first step
in an application conversion to take advantage of many of the new language
features without requiring skill in the more complex features of ILE. This section
describes the differences between using RPG IV in an ILE environment and in a
non-ILE environment.

1.4.1 A brief introduction to the Integrated Language Environment (ILE)
The Integrated Language Environment was added to OS/400 in V2R3 as a new
architecture for creating and running application programs. ILE was created
primarily to more efficiently support applications that are written to a more
modular fashion. There is a clear trend in the application development community
in general to move away from writing compiled units of code measured in
hundreds or thousands of lines of code. Instead, a more modular style is used,
where compiled units of code are typically quite small.

Smaller units of code can allow for reduced complexity and easier reusability of
application logic, which contribute to enhanced programmer productivity and to
enhanced reliability of the application code. The Original Program Model (OPM),
which is the architecture in use prior to the introduction of ILE, was quite good at
supporting and managing code written in the earlier style of very large
compilation units. However, it was less efficient at supporting more modular
applications.

ILE provides the ability for the application developer to write and compile in small
pieces of code and then statically bind those pieces together into program objects
that are very efficient when calling between the pieces. In addition, at run time,
the use of an ILE function, known as Activation Groups, allows for more efficient
system management of the storage used by applications in each user's job. A
more efficient exception handling model also enhances the performance and
reliability of these new, more modular style applications. In Chapter 4, “An ILE
guide for the RPG programmer” on page 61, there is a more detailed discussion
of some of these ILE features.

1.4.2 Using RPG IV without ILE
There are many features of the RPG IV language that do not require the use of
ILE system features. Even for applications that are not (yet) written in a modular
style, there are many advantages to moving to the more readable and usable
syntax of the RPG IV language. The RPG IV compiler supports creating program
objects that are compatible with OPM programs.

There is a parameter on the Create Bound RPG Program (CRTBNDRPG)
command called Default Activation Group (DFTACTGRP). The selection of the
value *YES for this parameter creates a program object that behaves in a way
compatible with OPM programs and can easily be mixed with OPM programs.
The default Activation Group is the part of a user’s job where all OPM programs
run. Typically, "true" ILE programs (that is, those programs created with
DFTACTGRP(*NO)) run in named ILE Activation Groups. By specifying
DFTACTGRP(*YES), the programmer tells the compiler to create an OPM-compatible
RPG IV program.

To begin taking advantage of the RPG IV language without any concern about a
lack of skill in ILE concepts, simply ensure you always specify DFTACTGRP(*YES)
15

when compiling your RPGLE source members. Then you can freely intermix your
new RPG IV programs with your OPM programs.

However, when using this option (DFTACTGRP(*YES)), you will be unable to use
any of the features of the RPG IV language that require the Integrated Language
Environment (ILE). For example, you will not be able to use any form of a bound
call in this type of program. This includes not only the use of the CALLB operation
code, but also any use of RPG IV subprocedures.

As you are reading this book, it is important to note which features use (and
require) ILE support. This will help you to understand how to compile the code
you create and also which features may require a bit more planning effort for the
use of ILE within the application.

1.5 IBM Certified Specialist AS/400 RPG programmer

Why should you become an IBM Certified AS/400 solutions expert? To
demonstrate to your customers and colleagues that you have what it takes to
design and develop superior custom solutions with IBM technologies. As a
certified professional, you receive the following benefits:

• Industry recognition of your knowledge and proficiency with IBM AS/400
products and technologies.

• IBM Certification logo, certificate, wallet card, and lapel pin to enable you to
identify your Certified status to colleagues or clients.

To learn more about IBM certification programs, go to the IBM certification Web
site at: http://www.ibm.com/certify

1.6 RPG IV sources on the Web

Do you want to find out more about RPG IV on the Internet? Check out these
resources.

1.6.1 General AS/400 resources from IBM
For general IBM AS/400 resources, consider these options:

• Both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or
e-mail is also provided. For more information, see “How to get IBM Redbooks”
on page 427. The redbooks Web site is located at:
http://www.redbooks.ibm.com/

• IBM PartnerWorld for Developers AS/400 has the mission to help you build
competitive solutions on the AS/400 system. Visit their site at:
http://www.as400.ibm.com/developer

• AS/400 Information Starting Point (often called the InfoCenter due to its URL)
is your gateway to AS/400 technical information and business solutions
including the Information Center, Technical Studio and the Online Library of
AS/400 reference material. You can find this information at:

– http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

– http://www.as400.ibm.com/infocenter
16 Who Knew You Could Do That with RPG IV?

• Technical Studio has technical workshops and business solutions on a wide
variety of AS/400 topics. Many of them feature RPG solutions. You can
located Tech Studio at:

– http://publib.boulder.ibm.com/pubs/html/as400/techstudio.htm

– http://www.as400.ibm.com/techstudio

• For online documentation, go to:
http://publib.boulder.ibm.com/html/as400/onlinelib.htm or
http://as400bks.rochester.ibm.com

Here, look for:

– ILE RPG for AS/400 Programmer's Guide, SC09-2507
– ILE RPG for AS/400 Reference, SC09-2508

• IBM Integrated Language Environment (ILE) RPG for AS/400 is located at:
http://www.software.ibm.com/ad/as400/library/ilerpg44.html

• VisualAge RPG and Code/400 is located at:
http://www.software.ibm.com/ad/varpg/

• Refer to the course from IBM Learning Services: Moving from RPG/400 to
RPG IV, S6126

1.6.2 Non-IBM general AS/400 resources
For non-IBM general AS/400 information, refer to these sources:

• A good AS/400 system specific search site can be found at:
http://www.search400.com

• Experience RPG IV Tutorial by Rogers, by Masri & Santilli, can be found at:
http://www.advice.com

• Robert Cozzi’s RPG Web site is located at: http://www.rpgiv.com

• The Modern RPG IV Language, by Robert Cozzi, can be found at:
http://www.mc-store.com

• The 400 Group, which has an ILE RPG IV focus area is located at:
http://www.the400group.com

• Midrange: http://www.midrange.com

Here, too, you can subscribe to an RPG400-L mailing list. This allows
programmers to discuss the main application development language of the
AS/400.

• NEWS/400 has active forums (like a news group) on RPG at:
http://www.news400.com/navbar/Glance-Forums.html

• The AS/400 user group called COMMON is located on the Web at:
http://www.common.org

This is the USA Web site. Click on Friends to select your geography for other
world-wide COMMON organizations. More directly, if you are interested in
European COMMON activity, you can go directly to:
http://www.comeur.org/f_events.htm

• AS/400 Manager’s online resource is available at: http://www.hotlink400.com

• An eclectic collection of AS/400 code examples from NEWS/400 Tips and
Techniques Community is on the Web at:
http://www.tnt400.com/codepage400.htm
17

• RPG IV Jump Start, by Bryan Meyers, can be found at:
http://www.news400store.com

• News groups:

– comp.sys.ibm.as400.misc

– news.software.ibm.com

– ibm.software.code400

– ibm.software.varpg

1.6.3 AS/400 magazines and books on the Web
The following publications and publishers can be found on the Internet:

• IBM’s AS/400 Magazine: http://www.as400magazine.com

• NEWS/400: http://www.news400.com

• Midrange Computing: http://www.midrangecomputing.com

• Midrange Systems: http://www.midrangesystems.com

• Duke Communications: http://www.dukepress.com

• Advice Press: http://www.advice.com
18 Who Knew You Could Do That with RPG IV?

Chapter 2. Programming RPG IV with style

This section of the book takes as its starting point "The Essential RPG IV Style
Guide" by Bryan Meyers, CCP, a senior technical editor for NEWS/400.

This article was first published in the June 1998 edition of NEWS/400. As Mr.
Meyers noted in the original article, the evolution of this style guide was a
collaborative effort. It emerged over a period of months out of discussions that
took place in The RPG IV Style Forum on the NEWS/400 Web site at:
http://www.news400.com

Not content with merely “preaching”, we also attempted to apply its rules to the
coding samples provided in this redbook. As any style guide is just a guide, we
took a small number of liberties with the source code samples provided with this
redbook since it was not practical in all cases to convert the code to a single style
since the code was gathered from a wide range of sources.

To preserve the original content of the work collected by Bryan Meyers, we follow
this section with 2.2, “Comments and extensions to the style guide” on page 27.
This section offers our own commentary to clarify or expand on some of the style
suggestions raised.

2.1 The essential RPG IV style guide

Here is a copy of the "The Essential RPG IV Style Guide" article from the June
1998 edition of NEWS/400. We felt that it summarized the intent of this section
so well that it warranted reprinting the article here in its entirety.

2.1.1 Comments
Good programming style can serve a documentary purpose in helping others
understand the source code. If you practice good code-construction techniques,
you’ll find that “less is more” when it comes to commenting the source. Too many
comments are as bad as too few.

2.1.1.1 Use comments to clarify, not echo, your code
Comments that merely repeat the code add to a program’s bulk, but not to its
value. In general, you should use comments for just three purposes:

• To provide a brief program or procedure summary
• To give a title to a subroutine, procedure, or other section of code
• To explain a technique that isn’t readily apparent by reading the source

2.1.1.2 Always include a brief summary at the beginning of a program
or procedure
This prologue should include the following information:

• A program or procedure title
• A brief description of the program’s or procedure’s purpose
• A chronology of changes that includes the date, programmer name, and

purpose of each change
• A summary of indicator usage
• A description of the procedure interface (the return value and parameters)
• An example of how to call the procedure
© Copyright IBM Corp. 2000 19

2.1.1.3 Use consistent ‘marker line’ comments to divide major sections
of code
For example, you should definitely section off with lines of dashes or asterisks the
declarations, the main procedure, each subroutine, and any subprocedures.
Identify each section for easy reference.

2.1.1.4 Use blank lines to group related source lines and make them
stand out
In general, you should use completely blank lines instead of blank comment lines
to group lines of code, unless you’re building a block of comments. Use only one
blank line, though; multiple consecutive blank lines make your program hard to
read.

Avoid right-hand “end-line” comments in columns 81 to 100. Right-hand
comments tend simply to echo the code, can be lost during program
maintenance, and can easily become “out of sync” with the line they comment. If
a source line is important enough to warrant a comment, it’s important enough to
warrant a comment on a separate line. If the comment merely repeats the code,
eliminate it entirely.

2.1.2 Declarations
With RPG IV, we finally have an area of the program source in which to declare
all variables and constants associated with the program. The D-specs organize
all your declarations in one place.

2.1.2.1 Declare all variables within D-specs
Except for key lists and parameter lists, do not declare variables in C-specs —
not even using *LIKE DEFN. Define key lists and parameter lists in the first
C-specs of the program, before any executable calculations.

2.1.2.2 Declare a literal as a named constant in the D-specs
This practice helps document your code and makes it easier to maintain. One
obvious exception to this rule is the allowable use of 0 and 1 when they make
perfect sense in the context of a statement. For example, if you’re going to
initialize an accumulator field or increment a counter, it’s fine to use a hard-coded
0 or 1 in the source.

2.1.2.3 Indent data item names for readability and document data
structures
Unlike many other RPG entries, the name of a defined item need not be
left-justified in the D-specs; take advantage of this feature to help document your
code:

D ErrMsgDSDS DS
D ErrPrefix 3
D ErrMsgID 4
D ErrMajor 2 OVERLAY(ErrMsgID:1)
D ErrMinor 2 OVERLAY(ErrMsgID:3)

2.1.2.4 Use length notation instead of positional notation in data
structure declarations
D-specs let you code fields either with specific from and to positions or simply
with the length of the field. To avoid confusion and to better document the field,
use length notation consistently. For example, code:
20 Who Knew You Could Do That with RPG IV?

D RtnCode DS
D PackedNbr 15P 5
instead of
D RtnCode DSD PackedNbr 1 8P 5

2.1.2.5 Use positional notation only when the actual position in a data
structure is important
For example, when coding the program status data structure, the file information
data structure, or the return data structure from an API, you’d use positional
notation if your program ignores certain positions leading up to a field or between
fields. Using positional notation is preferable to using unnecessary “filler”
variables with length notation:

D APIRtn DS
D PackedNbr 145 152P 5

In this example, to better document the variable, consider overlaying the
positionally declared variable with another variable declared with length notation:

D APIRtn DS
D Pos145 145 152
D PackNbr 15P 5 OVERLAY(Pos145)

2.1.2.6 When defining overlapping fields, use the OVERLAY keyword
instead of positional notation
Keyword OVERLAY explicitly ties the declaration of a “child” variable to that of its
“parent.” Not only does OVERLAY document this relationship, but if the parent
moves elsewhere within the program code, the child will follow.

2.1.2.7 If your program uses compile-time arrays, use the **CTDATA
form to identify the compile-time data
This form effectively documents the identity of the compile-time data, tying the
data at the end of the program to the array declaration in the D-specs. The
**CTDATA syntax also helps you avoid errors by eliminating the need to code
compile-time data in the same order in which you declare multiple arrays.

2.1.3 Naming conventions
Perhaps the most important aspect of programming style deals with the names
you give to data items (for example variables and named constants) and routines.

2.1.3.1 When naming an item, be sure the name fully and accurately
describes the item
The name should be unambiguous, easy to read, and obvious. Although you
should exploit RPG IV’s allowance for long names, do not make your names too
long to be useful. Name lengths of 10 to 14 characters are usually sufficient, and
longer names may not be practical in many specifications. When naming a data
item, describe the item; when naming a subroutine or procedure, use a
verb/object syntax (similar to a CL command) to describe the process. Maintain a
dictionary of names, verbs, and objects, and use the dictionary to standardize
your naming conventions.
Programming RPG IV with style 21

2.1.3.2 When coding an RPG symbolic name, use mixed case to clarify
the named item’s meaning and use
RPG IV lets you type your source code in upper and lowercase characters. Use
this feature to clarify named data. For RPG-reserved words and operations, use
all uppercase characters.

2.1.3.3 Avoid using special characters (for example, @, #, $) when
naming items
Although RPG IV allows an underscore (_) within a name, you can easily avoid
using this “noise” character if you use mixed case intelligently.

2.1.4 Indicators
Historically, indicators have been an identifying characteristic of the RPG syntax,
but with RPG IV they are fast becoming relics of an earlier era. To be sure, some
operations still require indicators, and indicators remain the only practical means
of communicating conditions to DDS-defined displays. But reducing a program’s
use of indicators may well be the single most important thing you can do to
improve the program’s readability.

2.1.4.1 Use indicators as sparingly as possible; go out of your way to
eliminate them
In general, the only indicators present in a program should be resulting indicators
for opcodes that absolutely require them (for example, CHAIN before V4R2) or
indicators used to communicate conditions such as display attributes to
DDS-defined display files.

Whenever possible, use Built-in Functions (BIFs) instead of indicators
As of V4R2, you can indicate file exception conditions with error-handling BIFs
(for example, %EOF, %ERROR, %FOUND) and an E operation extender to avoid
using indicators.

2.1.4.2 If you must use indicators, name them
V4R2 supports a Boolean data type (N) that serves the same purpose as an
indicator. You can use the INDDS keyword with a display-file specification to
associate a data structure with the indicators for a display or printer file; you can
then assign meaningful names to the indicators.

Use an array-overlay technique to name indicators before V4R2
Using RPG IV’s pointer support, you can overlay the *IN internal indicator array
with a data structure. Then you can specify meaningful subfield names for the
indicators. This technique lessens your program’s dependence on numeric
indicators. For example:

D IndicatorPtr * INZ(%ADDR(*IN))
D DS BASED(IndicatorPtr)
D F03Key 3 3
D F05Key 5 5
D CustNotFnd 50 50
D SflClr 91 91
D SflDsp 92 92
D SflDspCtl 93 93
22 Who Knew You Could Do That with RPG IV?

C IF F03Key = *ON
C EVAL *INLR = *ON
C RETURN
C ENDIF

2.1.4.3 Use the EVAL opcode with *Inxx and *ON or *OFF to set the
state of indicators
Do not use SETON or SETOFF, and never use MOVEA to manipulate multiple
indicators at once.

2.1.4.4 Use indicators only in close proximity to the point where your
program sets their condition
For example, it’s bad practice to have indicator 71 detect end-of-file in a READ
operation and not reference *IN71 until several pages later. If it’s not possible to
keep the related actions (setting and testing the indicator) together, move the
indicator value to a meaningful variable instead.

2.1.4.5 Do not use conditioning indicators — ever
If a program must conditionally execute or avoid a block of source, explicitly code
the condition with a structured comparison opcode, such as IF. If you’re working
with old S/36 code, get rid of the blocks of conditioning indicators in the source.

2.1.4.6 Include a description of any indicators you use
It’s especially important to document indicators whose purpose isn’t obvious by
reading the program, such as indicators used to communicate with display or
printer files or the U1-U8 external indicators, if you must use them.

2.1.5 Structured programming techniques
Give those who follow you a fighting chance to understand how your program
works by implementing structured programming techniques at all times.

2.1.5.1 Do not use GOTO, CABxx, or COMP
Instead, substitute a structured alternative, such as nested IF statements, or
status variables to skip code or to direct a program to a specific location. To
compare two values, use the structured opcodes IF, ELSE, and ENDIF. To
perform loops, use DO, DOU, and DOW with ENDDO. Never code your loops by
comparing and branching with COMP (or even IF) and GOTO. Employ ITER to
repeat a loop iteration, and use LEAVE for premature exits from loops.

2.1.5.2 Do not use obsolete IFxx, DOUxx, DOWxx, or WHxx opcodes
The newer forms of these opcodes — IF, DOU, DOW, and WHEN — support
free-format expressions, making those alternatives more readable. In general, if
an opcode offers a free-format alternative, use it.

2.1.5.3 Perform multipath comparisons with SELECT, WHEN, OTHER,
ENDSL
Deeply nested IFxx/ELSE/ENDIF code blocks are hard to read and result in an
unwieldy accumulation of ENDIFs at the end of the group. Do not use the
obsolete CASxx opcode; instead, use the more versatile
SELECT/WHEN/OTHER/ENDSL construction.
Programming RPG IV with style 23

2.1.5.4 Always qualify END opcodes
Use ENDIF, ENDDO, ENDSL, or ENDCS as applicable. This practice can be a
great help in deciphering complex blocks of source.

2.1.5.5 Avoid programming tricks and hidden code
Such maneuvers aren’t so clever to someone who doesn’t know the trick. If you
think you must add comments to explain how a block of code works, consider
rewriting the code to clarify its purpose. Use of the obscure “bit-twiddling”
opcodes (BITON, BITOFF, MxxZO, TESTB, TESTZ) may be a sign that your
source needs updating.

2.1.6 Modular programming techniques
The RPG IV syntax, along with the AS/400’s Integrated Language Environment
(ILE), encourages a modular approach to application programming. Modularity
offers a way to organize an application, facilitate program maintenance, hide
complex logic, and efficiently reuse code wherever it applies.

2.1.6.1 Use RPG IV’s prototyping capabilities to define parameters and
procedure interfaces
Prototypes (PR definitions) offer many advantages when you’re passing data
between modules and programs. For example, they avoid runtime errors by
giving the compiler the ability to check the data type and number of parameters.
Prototypes also let you code literals and expressions as parameters, declare
parameter lists (even the *ENTRY PLIST) in the D-specs, and pass parameters
by value and by read-only reference, as well as by reference.

2.1.6.2 Store prototypes in /COPY members
For each module, code a /COPY member containing the procedure prototype for
each exported procedure in that module. Then, include a reference to that /COPY
module in each module that refers to the procedures in the called module. This
practice saves you from typing the prototypes each time you need them and
reduces errors.

If you then reference the /COPY member in any module that refers to the called
module, you’ve effectively “globalized” the declaration of those constants.

2.1.6.3 Use IMPORT and EXPORT only for global data items
The IMPORT and EXPORT keywords let you share data among the procedures in
a program without explicitly passing the data as parameters — in other words,
they provide a “hidden interface” between procedures. Limit use of these
keywords to data items that are truly global in the program — usually values that
are set once and then never changed.

Include constant declarations for a module in the same /COPY member as
the prototypes for that module.

Note
24 Who Knew You Could Do That with RPG IV?

2.1.7 Character string manipulation
IBM has greatly enhanced RPG IV’s ability to easily manipulate character strings.
Many of the tricks you had to use with earlier versions of RPG are now obsolete.
Modernize your source by exploiting these new features.

2.1.7.1 Use a named constant to declare a string constant instead of
storing it in an array or table
Declaring a string (such as a CL command string) as a named constant lets you
refer to it directly instead of forcing you to refer to the string through its array
name and index. Use a named constant to declare any value that you do not
expect to change during program execution.

2.1.7.2 Avoid using arrays and data structures to manipulate character
strings and text
Use the new string manipulation opcodes and/or built-in functions instead.

2.1.7.3 Use EVAL’s free-format assignment expressions whenever
possible for string manipulation
When used with character strings, EVAL is usually equivalent to a MOVEL(P)
opcode. Use MOVE and MOVEL only when you do not want the result to be
padded with blanks.

2.1.8 Avoid obsolescence
RPG is an old language. After 30 years, many of its original, obsolete features
are still available. Do not use them.

2.1.8.1 Do not sequence program line numbers in columns 1 through 5
Chances are you’ll never again drop that deck of punched cards, so the program
sequence area is unnecessary. In RPG IV, the columns are commentary only. You
may use them to identify changed lines in a program or structured indentation
levels, but be aware that these columns may be subject to the same hazards as
right-hand comments.

2.1.8.2 Avoid program-described files
Instead, use externally defined files whenever possible.

2.1.8.3 If an opcode offers a free-format syntax, use it instead of the
fixed-format version
Opcodes to avoid include CABxx, CASxx, CAT, DOUxx, DOWxx, IFxx, and WHxx.

2.1.8.4 If a BIF offers the same function as an opcode, use the BIF
instead of the opcode
With some opcodes, you can substitute a built-in function for the opcode and use
the function within an expression. At V4R1, the SCAN and SUBST opcodes have
virtually equivalent built-in functions, %SCAN and %SUBST. In addition, you can
usually substitute the concatenation operator (+) in combination with the %TRIMx
BIFs in place of the CAT opcode. The free-format versions are preferable if they
offer the same functionality as the opcodes.

2.1.8.5 Shun obsolete opcodes
In addition to the opcodes mentioned earlier (style guidelines 5.2 and 5.3), some
opcodes are no longer supported or have better alternatives:
Programming RPG IV with style 25

• CALL, CALLB

The prototyped calls (CALLP or a function call) are just as efficient as CALL
and CALLB and offer the advantages of prototyping and parameter passing by
value. Neither CALL nor CALLB can accept a return value from a procedure.

• DEBUG

With OS/400’s advanced debugging facilities, this opcode is no longer
supported.

• DSPLY

You should use display file I/O to display information or to acquire input.

• FREE

This opcode is no longer supported.

• PARM, PLIST

If you use prototyped calls, these opcodes are no longer necessary.

2.1.9 Miscellaneous guidelines
Here’s an assortment of other style guidelines that can help you improve your
RPG IV code.

2.1.9.1 In all specifications that support keywords, observe a
one-keyword-per-line limit
Instead of spreading multiple keywords and values across the entire
specification, your program will be easier to read and let you more easily add or
delete specifications if you limit each line to one keyword, or at least to closely
related keywords (for example, DATFMT and TIMFMT).

Begin all H-spec keywords in column 8, leaving column 7 blank
Separating the keyword from the required H in column 6 improves readability.

2.1.9.2 Relegate mysterious code to a well-documented, well-named
procedure
Despite your best efforts, on extremely rare occasions, you simply will not be able
to make the meaning of a chunk of code clear without extensive comments. By
separating such heavily documented, well-tested code into a procedure, you’ll
save future maintenance programmers the trouble of deciphering and dealing
with the code unnecessarily.

2.1.10 Recommendations
Sometimes good style and efficient runtime performance do not mix. Wherever
you face a conflict between the two, choose good style. Hard-to-read programs
are hard to debug, hard to maintain, and hard to get right. Program correctness
must always win out over speed. Keep in mind these admonitions from Brian
Kernighan and P.J. Plauger’s The Elements of Programming Style:

• Make it right before you make it faster.
• Keep it right when you make it faster.
• Make it clear before you make it faster.
• Do not sacrifice clarity for small gains in efficiency.
26 Who Knew You Could Do That with RPG IV?

2.2 Comments and extensions to the style guide

We do not expect you to agree with all the points made in the style guide, but it is
an excellent foundation. Every installation is different, and we encourage you to
use these guidelines as a starting point for your own.

Look at the standards in use in your own installation. You may not have any
formal documentation, but your programs will undoubtedly express some style,
even if it is best described as “early 70s.”

As we reviewed the style guide, we made a few additions, clarifications and
modifications of our own. You may find them useful in establishing your own
“style”.

• Section 2.1.2.3, “Indent data item names for readability and document data
structures” on page 20

When coding D specs, the RPG compiler allows you to start the name of the
data item in position 7. Resist the temptation! Always leave at least one space
between the D and the first character of the name. You will be amazed at how
much more readable it makes your code. Compare the two samples that follow
if you have any doubts:

DWorkNum S 7 0
DWorkDay S 1 0
DDayName S 9
DWorkDate S D DatFmt(*ISO)

We think you’ll agree that this second version is a lot more readable, and more
readable means more maintainable:

D WorkNum S 7 0
D WorkDay S 1 0
D DayName S 9
D WorkDate S D DatFmt(*ISO)

• Section 2.1.2.6, “When defining overlapping fields, use the OVERLAY
keyword instead of positional notation” on page 21

Those of you who have been using RPG IV for a while may not have noticed
that additional function has been added to the OVERLAY keyword. It is now
possible to specify the name of a data structure as the “parent” as you can see
in the following example:

D DayData DS
D 9A Inz('Monday')
D 9A Inz('Tuesday')
D 9A Inz('Wednesday')
D 9A Inz('Thursday')
D 9A Inz('Friday')
D 9A Inz('Saturday')
D 9A Inz('Sunday')

D DayName 9A Dim(7) Overlay(DayData)

Also in V4R4, the keyword *NEXT was added as an option so that a
hard-coded offset does not need to be used.
Programming RPG IV with style 27

• Section 2.1.3.2, “When coding an RPG symbolic name, use mixed case to
clarify the named item’s meaning and use” on page 22

While we agree wholeheartedly with using mixed case, we find that many RPG
programmers seem to be allergic to using the Shift key. We can only plead
with them to at least type all of their code in lower case rather than all in upper
case.

One example of a mixed-case naming convention is the "Camel Notation" (for
example: ActStsCde for account status code). The naming convention refers
to the "humps" in the variable names.

This guideline also suggests that you use all upper case for RPG reserved
words and operations. We feel that this is largely a matter of taste and have
chosen to use mixed-case in our examples.

• Section 2.1.3.3, “Avoid using special characters (for example, @, #, $) when
naming items” on page 22

We have deliberately broken this rule in one instance—in the naming of
pointers. In this case, we use the "@" (commercial at) symbol at the end of the
field name. For example, a pointer field that is used to supply the address of
the data structure AddrDetail would be named AddrDetail@.

Avoiding using special characters takes on new meaning when you take into
account international languages. The invariant character set is important,
because this is the common part of characters used in all codepages.
Interesting to see that the example of the "@" used have different X'..' values
in a lot of codepages. This can be a significant problem if you start re-using
modules compiled in another country (with different codepage) than the
country that you will bind into a program.

An example of how to avoid the "@" symbol to indicate the variable is a
pointer is to use the "Hungarian Notation." Here, the first character of the
variable name indicates the data type of the variable, for example, pCustNbr
or cActStsCde.

• Section 2.1.4.2, “If you must use indicators, name them” on page 22

Some readers, particularly those who do not have access to V4R2 named
indicators, may prefer the following technique as an alternative to the
array-overlay method of naming indicators mentioned in the style guide. The
basic idea here is to take advantage of the fact that RPG allows indicators to
be treated as an array. By using a named constant with a value of the required
indicator number, the constant can be used to name it, for example:

D F03Key C 3
D F05Key C 5
D CustNotFnd C 50

C CustKey Chain CustMaster 50
C If *In(CustNotFnd) = *On

• Section 2.1.4.3, “Use the EVAL opcode with *Inxx and *ON or *OFF to set the
state of indicators” on page 23

We recommend that you always use *On and *Off rather than the obscure "1"
and "0". It is also worth noting that in RPG IV, an indicator's status can be
tested directly. For example, the following lines of code are equivalent:
28 Who Knew You Could Do That with RPG IV?

C If *In25 = *On and *In30 = *Off

C If *In25 and Not *In30

• Section 2.1.5.5, “Avoid programming tricks and hidden code” on page 24

If you have absolutely no choice but to “bit-twiddle”, consider isolating the
code in a subprocedure or subroutine. That way it is less likely to be “broken”
during maintenance by a programmer who does not understand its intent. The
style guide also suggests this tactic in 2.1.9, “Miscellaneous guidelines” on
page 26.

• Section 2.1.6.2, “Store prototypes in /COPY members” on page 24

Some programmers prefer to group all of the prototypes for a particular
Service Program into a single /COPY member, rather than the “one per
module” approach. It is also acceptable to group prototypes based on the
subsystem in which they are used.

The important point to note here is that prototypes do not cause any storage to
be allocated. This frees you to group your prototypes in any manner that suits
your installation since it doesn’t matter how many “unused” prototypes appear
in a program.

If you include Constants in the /Copy member, watch out for situations where
you may have the same named constant defined in multiple places. In this
case, you may find it necessary to use RPG IV's ability to nest /Copy
statements and incorporate the constants in this way.

You may also want to take advantage of V4R2 conditional compilation
directives to ensure that a /COPY member is not included more than once.

• Section 2.1.7.2, “Avoid using arrays and data structures to manipulate
character strings and text” on page 25

This is even more significant if you are using V4R2 or later releases. On these
releases, you should look at using variable length string support when
manipulating strings.
Programming RPG IV with style 29

30 Who Knew You Could Do That with RPG IV?

Chapter 3. Subprocedures

One of the major enhancements of RPG IV at V3R2 and V3R6 was the ability to
define multiple procedures per module. This chapter discusses how to use the
procedures efficiently and also gives a working example on moving from
subroutines to subprocedures easily.

3.1 Subprocedure terminology

This section differentiates multiple terms often used when discussing
subprocedures. The different terms explained are:

• Integrated Language Environment (ILE) Modules
• Main procedure
• Built-in functions
• Subroutines

3.1.1 ILE modules
Processing within ILE programs (*PGM) occurs at the procedure level. All ILE
programs consist of one or more modules (*MODULE), which in turn, consist of
one or more procedures.

You can think of RPG IV modules as falling into one of three basic categories:

• Those containing only a main procedure and no subprocedures
• Those containing a main procedure and one or more subprocedures
• Those with no main procedure but with one or more subprocedures

3.1.2 Main procedure
A main procedure can be called either by a dynamic call (CALL) or by a bound
call (CALLB).

Subprocedures, on the other hand, must always be called by a bound call. It is for
this reason that subprocedures can only be used in “real” ILE programs. By this,
we are referring to programs that are created by the Create Program (CRTPGM)
command or by Create Bound RPG Program (CRTBNDRPG) command with the
Default activation group (DFTACTGRP) parameter set to *NO.

Subprocedures differ from main procedures in several respects. The main
difference is that subprocedures do not (and cannot) use the RPG cycle while
running, even if they are part of a module where the main source section is using
the RPG cycle. For a full description of other differences, see ILE RPG for AS/400
Reference, SC09-2508.

3.1.3 Built-in functions
Subprocedures can optionally be defined to return a value, in which case they are
often referred to as functions or user-defined functions. In this case, they are
invoked by being referenced in a free-form C spec just as if they were an RPG IV
Built-in Function (BIF).
© Copyright IBM Corp. 2000 31

3.1.4 Subroutines
Subroutines are different from subprocedures, but they are often referred to as
using the same base functionality in the basics of structured programming. A
subroutine is part of the main procedure or any subprocedure (like the *PSSR
subroutine) and can be invoked multiple times from different locations (only in the
same procedure). Subroutines share global variables or local variable within the
same procedure. The subprocedure offers the same base functionality as
subroutines, plus many more advantages, which are discussed in the following
section.

3.2 Advantages of using subprocedures

Subprocedures offer a number of significant advantages over subroutines:

• Subprocedures can define their own local variables.

Local variables can only be modified by logic within the subprocedure.
Contrast this with variables that you may have defined for use within a
subroutine. Such variables are accessible from anywhere in the entire source
file and are, therefore, quite likely to be modified by accident.

• Subprocedures can accept parameters.

If you want to use parameters in a subroutine, you have to fake them out by
defining variables to serve the purpose. This tends to make the code less
intuitive since there is no obvious connection between the parameter and the
subsequent exit subroutine (EXSR) instruction. Of course, you can always rely
on the accurate comments in your code to clear up any possible
misunderstandings.

Parameters to a subprocedure can also be passed by value. That is, a copy of
the parameter’s content (its value) is passed to the subprocedure. This is in
contrast to the normal method of a parameter passing on the AS/400 system,
where parameters are passed by reference. By this, we mean that a pointer to
the data is passed rather than the actual data itself.

Variable length parameters can also be used when calling subprocedures.

• Subprocedures provide parameter checking.

The RPG compiler insists that all subprocedures be prototyped (see 3.3.1.1,
“Prototypes” on page 35). This allows the parameters passed to a
subprocedure to be checked at compilation time for consistency. This helps to
reduce run-time errors, which can be costly.

Parameters can be defined as optional or omitted.

• Subprocedures can be used as a user defined function.

Subprocedures that return a value can be used anywhere in the free-form C
specifications (specs) that a variable of the same type and size can be used.
This allows for an English like interface to the subprocedure that is far more
intuitive than an EXSR.

Throughout this book, we have used the word "spec" to refer to
specification. This applies to all occurrences of the word.

‘Spec’
32 Who Knew You Could Do That with RPG IV?

• You can call the subprocedure from outside the module, if it is exported.

• Subprocedures provide multiple entry points within the same RPG module.

Multiple exported subprocedures can be placed into the same module and
each subprocedure can be called from outside or within the same module.
This support in provided in conjunction with the ILE service program
functionality.

• Subprocedures support recursion.

Variables in a subprocedure are by default automatic. A new version of the
variable is created each time the subprocedure is invoked. Because of this,
RPG IV subprocedures are allowed to recurse, meaning to call themselves
directly or indirectly. This can be useful in certain types of design, for example,
when building an inventory system that contains multiple levels of parts nested
to each other (parts explosions).

3.3 The anatomy of a subprocedure

This section introduces you to the basics of coding subprocedures.

3.3.1 Subprocedure definition
Subprocedures are specified:

• After the main source section if one exists
• Following an H spec containing the NOMAIN keyword if there is no main

section

Note: There may be other specs between the H spec and the beginning of the
subprocedure, for example, F specs to define files to be used by the
subprocedures.

Here are the basic elements used when coding subprocedures in your programs:

• Prototype (see 3.3.1.1, “Prototypes” on page 35, for more information)
• Procedure Begin and End specs
• Procedure-Interface (PI) definition
• Definition specifications of local variables (optional)
• Calculation section, which incorporates the optional return value

Each recursive call causes a new invocation of the procedure to be placed
on the call stack. The new invocation has new storage for all data items in
automatic storage, and that storage is unavailable to other invocations
because it is local. A data item that is defined in a subprocedure uses
automatic storage unless the STATIC keyword is specified for the definition.

The automatic storage that is associated with earlier invocations is
unaffected by later invocations. All invocations share the same static
storage, so later invocations can affect the value held by a variable in static
storage.

Recursion can be a powerful programming technique when properly
understood.

A note on recursion
Subprocedures 33

These elements are highlighted in the following simple subprocedure, which
receives two integers passed as parameters and returns the sum of the two.

Note: The markers 1 through 6 are defined immediately after this source code
example.

* PROCEXAM from QRPGLESRCS in RPGISCOOL

* Procedure AFunction which receives 2 integer values and
* returns the sum as an integer

P AFunction B 1

D AFunction PI 10P 0 2
D AnInputParm1 5P 0
D AnInputParm2 5P 0

D AReturnValue S 10P 0 3

C Eval AReturnValue = AnInputParm1 4
C + AnInputParm2
C Dsply AReturnValue

C Return AReturnValue 5

P E 6

1 The Begin procedure spec (B in position 24 of a procedure spec) supplies the
name of the subprocedure. Its presence also signals to the compiler not to flag
the subsequent D and C specs as out of sequence.

2 The Procedure Interface definition identifies the data type (packed decimal)
and size (10 digits with no decimal places) of the return value. It also marks
the beginning of the parameter list. In this sense, it performs a similar function
to the *ENTRY PLIST operation.

In our example, there are two parameters. The end of the list is signalled by
the appearance of the standalone field AReturnValue.

The procedure-interface definition is optional if the subprocedure does not
return a value and does not have any parameters passed to it. Please refer to
3.3.2, “Procedure-interface definitions” on page 36.

3 Definitions of variables, constants, and prototypes needed by the
subprocedure. These definitions are local definitions.

4 Any calculation specs needed to perform the task of the procedure. The
calculations may refer to both local and global definitions, though the use of
global data is discouraged. If any subroutines were included within the
subprocedure, they are local and cannot be used outside of the subprocedure.

5 If the subprocedure returns a value, supplying the actual value is the task of
the RETURN operation.

Note that RETURN can either use a simple variable, as in this example, or can
return an expression. Had we chosen to use this option, we could have
simplified our example by coding:

C Return AnInputParm1 + AnInputParm2

6 The End procedure spec (E in position 24 of a procedure spec). The name of
the subprocedure can be repeated here, but is not required.
34 Who Knew You Could Do That with RPG IV?

3.3.1.1 Prototypes
To call a subprocedure, you should use a prototyped call. You can call any
program or procedure that is written in any language in this way. A prototyped call
is one where the call interface (the number, type and size of the parameters) is
checked at compile time by reference to the prototype.

The prototype for the sample subprocedure would look something like this:

* PROCEXAMPR from QRPGLESRCS in RPGISCOOL

D AFunction PR 10P 0
D Packed5 5P 0
D Packed5 5P 0

Note: The field names for the two parameters are identical. Normally this is not
permitted in RPG IV, but in this case, it is acceptable since the compiler is going
to ignore the name anyway. The only part that matters to the compiler is the
number of parameters and their data type and size. We recommend that you do
not do this!

A prototype is a definition of the call interface. It contains the following
information:

• Whether the call is bound (procedure) or dynamic (program)
• How to find the program or procedure (the external name)
• The number and nature of the parameters
• The parameters that must be passed, and which parameters are optionally

used
• Whether operational descriptors should be passed
• The data type of the return value (optional, for subprocedures only)

A prototype must be included in the definition specs of the program or procedure
that makes the call. The prototype is used by the compiler to call the program or
procedure correctly, and to ensure that the caller passes the correct parameters.
For this verification to occur, the prototype needs also to be included when
compiling the module in which the subprocedure is located, and when compiling
any module that wants to use the subprocedure.

This section concentrates on writing and using only RPG IV subprocedures.
The same prototype-writing skills can be applied to call procedures written in
other languages, most notably C. This means that RPG IV programs now have
access to all the functions in the C function library, which is shipped as part of
OS/400 on all systems. Other system APIs, previously available only to C
programmers, such as TCP/IP sockets, the SSL APIs, and direct program
access to the Integrated File System (IFS), are also enabled by the prototyping
support associated with subprocedures.

The concept of prototyping the C function library is further explained in 5.1,
“Exploiting the C function library: A case study” on page 119.

Language interoperability
Subprocedures 35

3.3.2 Procedure-interface definitions
For all subprocedures, you need to define a procedure interface. A procedure
interface definition is basically a repeat of the prototype information within the
definition of a procedure. It is used to define the entry parameters and the return
value for the subprocedure. The compiler uses this information to ensure that the
internal definition of the procedure is consistent with the external definition (the
prototype).

The procedure-interface definition can be specified anywhere in the definition
specs. In practice, most programmers tend to place them at the beginning of the
D specs. A procedure interface is compulsory if the procedure returns a value, or
if it has any parameters. Otherwise, it is optional.

A procedure interface can also be used for the main procedure, in place of the
*ENTRY PLIST. This can be coded anywhere in the D specs providing that it is
preceded by its prototype. Again, it is a good idea to have these as the first two
items in the D specs.

3.3.3 Order of coding the source elements
As we noted earlier, an RPG IV module consists of an (optional) main procedure
and zero or more subprocedures. A main procedure is one that can be specified
as the program entry procedure and receive control when the program is first
called. The main procedure consists of the set of H, F, D, I, C, and O specs that
begin the source.

Any files and global variables that are required in the main procedure or in the
subprocedures must be defined in the main section of the code.

Figure 1 illustrates the layout of a complete RPG source containing multiple
subprocedures.

Note: The markers 1 through 5 are defined immediately after this figure.
36 Who Knew You Could Do That with RPG IV?

Figure 1. Order of coding the source elements

1 The NOMAIN keyword on the H spec is used if there is no mainline logic in this
module. That is to say that the only C specs are those in the subprocedures.

Note that the F specs always go at the beginning of the member, just after the
H spec. These files can be used, either by the mainline code and/or by the
subprocedures. Even if there is no main line logic, the F specs must always be
defined at the beginning of the module. By definition then, all fields defined in
files are global in nature.

2 The first PI line in the program serves as a replacement for the *ENTRY
PLIST. This is optional.

1 H specifications Specify NOMAIN if no Calcs

1 F specfications

2 D specfications PR Prototypes

2 D specfications PI Main Program Interface def (can
replace *Entry PLIST)

3 D specfications Data items visible throughout module

I specfications

C specfications

O specfications

P specifications B Start of procedure 1

D specifications PI Interface definition

D specfications Data items visible only to
Subprocedure 1

C specfications Can access local and global data
items

P specfications E End of procedure 1

P specifications B Start of procedure n

D specifications PI Interface definition

D specfications Data items visible only to
Subprocedure n

C specfications Can access local and global data
items

P specfications E End of procedure n

*MODULE

Local
Scope

Global
Scope

Local
Scope

Main Procedure

4444 Subprocedure 1

5555 Subprocedure n
Subprocedures 37

3 The D and I specs that follow are for data items in the mainline, which are
global. They can be accessed from both mainline logic and any subprocedures
in this module.

4 Following the O specs for the mainline code is the beginning P spec for the
first subprocedure. It is followed by the PI (procedure interface). The D and C
specs for this subprocedure are next. The final line is the ending P spec.

5 Any other subprocedures would follow, each with its own set of P, D, and C
specs.

The procedure-interface definition may be placed anywhere within the definition
specs. However, we strongly recommend that you code it immediately following
the P spec. The use of a RETURN opcode is recommended but does not need to
be coded unless a value is to be returned. The subprocedure automatically
returns when it reaches the end of the calculation specs.

3.3.4 Calling your subprocedures
Always use a prototyped call to your subprocedures. It can be done with a
CALLB, but why would you? The prototyped call provides a much better interface
and offers the benefits of parameter checking and a number of other advantages
that we discuss later (see 3.6.1, “The power of prototyping” on page 50). For
these reasons, we only discuss the use of prototyped subprocedure calls in this
section.

In RPG, prototyped calls are also known as free-form calls. A free-form call refers
to the fact that the arguments for the call are specified using free-form syntax,
much like the arguments for built-in functions.

There are two ways to make a free-form call:

• If there is no return value, use the CALLP operation.

• If there is a return value, place the prototyped procedure within an expression,
for example, using the EVAL instruction. If you do not the want to use the
returned value, you can use CALLP, in which case, the return value is ignored.

Using either type of procedure call, you can call:

• A procedure in a separate module within the same ILE program or service
program

• A procedure in a separate ILE service program

• A procedure in another program through the use of a procedure pointer as
discussed in 3.6.3, “Using procedure pointer calls” on page 56

Here are some examples of using the subprocedure AFunction which we
introduced earlier in this section (see 3.3.1, “Subprocedure definition” on page
33). Notice that the value returned can be used in ways other than simply
assigning it to a variable. As shown in the second example, it can also be used
directly in an expression.

* Using the free-form function call with the Eval op-code
C Eval TheResult = AFunction(AParm1 : AParm2)

* Using the free-form function call with the If op-code
C If AFunction(Parm1 : Parm2) = 1

* Using the free-form function call with the Dou op-code
C Dou AFunction(Parm1 : Parm2) = 1
38 Who Knew You Could Do That with RPG IV?

If the subprocedure does not return a value, you can use the following syntax to
call it:

* Using the Call a Prototyped Procedure (CallP) op-code
C CallP AFunction(AParm1 : AParm2)

3.4 Moving from subroutines to subprocedures

Existing subroutines often make good candidates for subprocedures. In this
section, we take a subroutine and convert it into a subprocedure.

3.4.1 Why use subprocedures
As we noted in 3.2, “Advantages of using subprocedures” on page 32,
subprocedures offer a number of features that are not available with subroutines.
Nonetheless, if you do not require the improvements offered by subprocedures,
you can continue use a subroutine. The processing of a subroutine is still slightly
faster than a bound call to a subprocedure.

3.4.2 Subroutine example DATESUBR
This program example is called with a single date field in *ISO format as the
single input parameter. Based on this date, it calculates the day of the week and
displays it to the user. To be clear, this program uses subroutines to accomplish
its work. Later, in 3.4.4, “DATEMAIN1 subprocedure example” on page 43, you
see the same code re-written with subprocedures.

* filename DATESUBR from SUBPROCSRC in RPGISCOOL
* This routine uses Sunday as day 7 - any date that represents
* a Sunday will work
D AnySunday C D'1999-06-13'

D WorkNum S 7 0
D WorkDay S 1 0
D DayName S 9
D WorkDate S D DatFmt(*ISO)

* Days of the week name table - note no field names are required
D NameData DS
D 9 Inz('Monday')
D 9 Inz('Tuesday')
D 9 Inz('Wednesday')
D 9 Inz('Thursday')
D 9 Inz('Friday')
D 9 Inz('Saturday')
D 9 Inz('Sunday')
* Define the array as an overlay of the DS name
D Name 9 Dim(7) Overlay(NameData)

* Program parameters
C *Entry PList
C Parm WorkDate

* Call DayOfWeek subroutine to initialize field Workday
C Exsr DayOfWeek

* Using Workday, initialize DayName from name table
C Eval DayName = Name(WorkDay)

* Display resulting name
C DayName Dsply

* Terminate Program
C Eval *InLR = *On

* Subroutine: DayOfWeek (Day of the Week)
* Using the content of WorkDate, will initialize the field
* WorkDay with a number representing the day of the week
Subprocedures 39

* (Monday = 1, ... , Sunday = 7)

C DayOfWeek Begsr

C WorkDate Subdur AnySunday WorkNum:*D
C WorkNum Div 7 WorkNum
C Mvr WorkDay

* Testing for < 1 allows for the situation where the input date
* is earlier than the base date (AnySunday)

C If WorkDay < 1
C Add 7 WorkDay
C Endif

C Endsr

3.4.3 Transforming a subroutine to a subprocedure
There are four steps required to transform a subroutine into a subprocedure.
These are explained in this section:

1. Remove the BEGSR/ENDSR instructions, and specify the return value.
2. Add the begin and end procedure specs and the procedure interface.
3. Define the prototype.
4. Replace the EXSR instruction in the main procedure with the subprocedure

invocation.

The following modifications can also be made in order to use the language more
efficiently. They are covered later in the sections that are indicated:

• Use a procedure interface for the Main procedure’s parameters. See 3.5.2,
“Replacing the *ENTRY PLIST” on page 45.

• Use other subprocedures in your subprocedure. See 3.5.3, “Subprocedures
using subprocedures” on page 46.

• Place your subprocedures in a Service Program. See 3.5.4, “Using an ILE
Service Program” on page 47.

Note: In this section, the markers 1 through 5 next to the code snippets in the text
correspond to the same numbers in the full program listing found in 3.4.4,
“DATEMAIN1 subprocedure example” on page 43.

You can try this example by compiling the code from this section on your
AS/400 system. You can use the following command to create the program:

CRTBNDRPG PGM(rpgiscool/datesubr) SRCFILE(rpgiscool/subprocsrc)

Then, use the following command to execute it:

CALL PGM(rpgiscool/datesubr) PARM('1969-01-31')

Try it yourself

Section 2.1, “The essential RPG IV style guide” on page 19, offers you some
suggestions on the proper coding style for subprocedures.

Doing it with style
40 Who Knew You Could Do That with RPG IV?

3.4.3.1 Step 1: Returning a value
This first step focus on removing the subroutine identifier and specifying a return
value instruction:

1. Using the subroutine code as a base, remove the BEGSR (Begin subroutine)
and ENDSR (End Subroutine) opcodes.

2. Add a RETURN instruction and specify the return value in factor 2, as shown
with marker 1 in the following code sample.

This specifies the value that will be returned to the caller. This can be a simple
value:

C If WorkDay < 1
C Add 7 WorkDay
C Endif
* Returning result to the calling procedure 1

C Return WorkDay

It can also be an expression since the RETURN operation code is a free-form
operation:

* Returning result to the calling procedure 1

C If WorkDay < 1
C Return WorkDay + 7
C Else
C Return WorkDay
C Endif

3.4.3.2 Step 2: Defining the interface
This section defines the interface that defines the entry parameters and the return
value of the subprocedure:

1. Add the P-specs (Begin and End).

Subprocedures begin and end with P specs. The beginning P spec names the
subprocedure and has a similar layout to the D spec. The B (for Begin) and
the E (for End) appear in position 24. Note that the ending P spec doesn’t
require that the name of the procedure be present.

* SubProcedure definition: DayOfWeek 2

P DayOfWeek B
...
P E

2. Declare the Procedure Interface.

Now, you need a Procedure Interface (PI). The first line of the PI defines the
data type and size of the return value. In our example, this is a single digit
numeric field with no decimal places.

Subsequent lines define the parameters passed to or from the subprocedure.
Our example has only one parameter, the field WorkDate, which is an *ISO
format date.

The PI is typically the first D spec in the subprocedure and effectively acts as
the *ENTRY PLIST. The end of the parameter list is indicated by the start of a
new data structure, stand-alone field, constant, or prototype. In our example,
the parameter list is terminated by the arrival of the constant AnySunday.

* SubProcedure definition: DayOfWeek 3

D DayOfWeek PI 1 0
Subprocedures 41

D WorkDate D

D AnySunday C D'1999-06-13'

For the purpose of this example, we moved those field definitions and
constants, which are used only by the subprocedure, into the subprocedure
itself. These local data items will now be accessible only within the
subprocedure.

3.4.3.3 Step 3: Defining the prototype
The format of the parameters in the prototype must match the Procedure
Interface (PI). The parameters do not need to be named. If they are named, the
name does not need to match the one specified on the PI. In fact, the compiler is
going to completely ignore the name on the parameter. It is only interested in its
data type and size.

* Prototype for subprocedure DayOfWeek 4

D DayOfWeek PR 1 0
D InputDate D Datfmt(*ISO)

3.4.3.4 Step 4: Calling the subprocedure
The last step is to replace the Exit subroutine EXSR instructions with an
invocation of the subprocedure. Since our subprocedure returns a value, we need
to use it in an expression.

Most RPG programmers would probably start out by coding this way:

D DayNo S 1 0
....
* Call DayOfWeek subprocedure, passing WorkDate, will return DayNo
C Eval DayNo = DayOfWeek(WorkDate)
* Using DayNoas an index to table Name to derive DayName value
C Eval DayName = Name(DayNo)

However, there’s a better way. Remember that subprocedures can appear
anywhere in an expression where a variable of the same type can be used.

A subprocedure can return, at most, one value. If you need to return more
than one value, you can choose any of those options:

• Return a data structure.

• Return a pointer to a data structure.

• Modify the content of parameters passed to you. This is only possible if
the parameter was passed by reference. See 3.6.2.1, “Passing by
reference” on page 54.

• Use ILE’s ability to share data items between modules via the IMPORT
or EXPORT keyword. See Chapter 4, “An ILE guide for the RPG
programmer” on page 61.

Returning values subprocedures
42 Who Knew You Could Do That with RPG IV?

Here’s the same example with a “cleaner” programming style:

* Call DayofWeek subprocedure, passing WorkDate, using return 5

* value to derive DayName value.

C Eval DayName = Name(DayOfWeek(WorkDate))

The compiler generates the necessary call to the DayOfWeek procedure and
uses the returned value to supply the array subscript for the Name array.

3.4.4 DATEMAIN1 subprocedure example
Here is the complete result code. This program now contains a subprocedure that
basically has the same functionality as the subroutine shown in 3.4.2, “Subroutine
example DATESUBR” on page 39. As described earlier, the following steps
enhance this code to take advantage of the power of using subprocedures
efficiently in RPG IV.

* DATEMAIN1 from SUBPROCSRC in RPGISCOOL

* Prototype for subprocedure DayOfWeek 4
D DayOfWeek PR 1 0
D InputDate D Datfmt(*ISO)

* Days of the week name table - note no field names are required
D NameData DS
D 9 Inz('Monday')
D 9 Inz('Tuesday')
D 9 Inz('Wednesday')
D 9 Inz('Thursday')
D 9 Inz('Friday')
D 9 Inz('Saturday')
D 9 Inz('Sunday')
* Define the array as an overlay of the DS name
D Name 9 Dim(7) Overlay(NameData)

D DayName S 9
D WorkDate S D DatFmt(*ISO)

* Program input parameter
C *Entry PList
C Parm WorkDate

* Using DayofWeek, initialize DayName with table Name 5
C Eval DayName = Name(DayOfWeek(WorkDate))

* displaying result
C DayName Dsply

* Terminate Program
C Eval *InLR = *On

* SubProcedure: DayOfWeek (Day of the Week)
* The subprocedure accepts a valid date (format *ISO) and returns
* a number (1 digit) representing the day of the week
* (Monday = 1, ... , Sunday = 7) 2

P DayOfWeek B

* procedure interface definition 3
D DayOfWeek PI 1 0
D WorkDate D

D AnySunday C D'1999-06-13'

D WorkNum S 7 0
D WorkDay S 1 0

C WorkDate Subdur AnySunday WorkNum:*D
C WorkNum Div 7 WorkNum
C Mvr WorkDay

* Returning result to the calling procedure 1
Subprocedures 43

C If WorkDay < 1
C Return WorkDay + 7
C Else
C Return WorkDay
C Endif

* Procedure definition end marker 2
P E

3.5 Using subprocedures efficiently

In this section, we enhance the previous example by:

• Using /COPY members for prototypes
• Replacing the main procedure’s *ENTRY PLIST with a Procedure Interface
• Using a subprocedure from within our subprocedure
• Creating a Service Program from our subprocedures

These techniques, among others, show the power of using subprocedures in your
application design.

3.5.1 Using /COPY members for prototypes
A common (and encouraged) practice is to place the prototypes for
subprocedures in a separate source member that is copied in (via the /COPY
directive). This is especially important if the subprocedure is placed in a separate
module (source member). It is critical that the prototype in the calling procedure
match the one in the defining procedure, since it is the one in the module
containing the subprocedure that the compiler verified for you.

Prototypes for groups of related functions should be placed in a single member,
for example, Date routines, validation routines, and so on. You can also choose
to group prototypes per service program.

Please note that, when we say /COPY, we do not mean that you should copy the
source lines using Source Edit Utility (SEU) (or any other editor for that matter).
One of the objectives of using prototypes is to avoid making mistakes when
calling programs and procedures. If the prototype exists in each individual source
member, it can be edited in each member with a resulting loss of integrity.

You can try this example by compiling the code from this section on your
AS/400 system. You can use the following command to create the program:

CRTBNDRPG PGM(rpgiscool/datemain1) SRCFILE(rpgiscool/subprocsrc)
DFTACTGRP(*NO) ACTGRP(*NEW)

Then, use the following command to execute it:

CALL PGM(rpgiscool/datemain1) PARM('1972-03-08')

Try it yourself

There’s no performance penalty for unused prototypes.

Important
44 Who Knew You Could Do That with RPG IV?

The following examples list a prototype in their specific members and include
them in the main source section when required. The /COPY instruction can be
use as follows:

/COPY library/sourcefile,member

Refer to the ILE RPG for AS/400 Reference, SC09-2508, manual for more
information.

3.5.2 Replacing the *ENTRY PLIST
You can use prototypes to validate the parameters on any kind of call, not just
bound calls or subprocedure calls. We replace the formal *ENTRY PLIST by a
prototype/procedure interface combination. The resulting prototypes can then be
used by other programs. We realize that, given the nature of our sample program,
this is not likely, but the principle sounds good.

Note: The markers A through H are used throughout the following sections to
identify matching source code examples up to, but not including, 3.6.3, “Using
procedure pointer calls” on page 56.

For our example, the main procedure’s input parameters would be coded as:

* Program input parameter F

D MyMainModule PI
D WorkDate D DatFmt(*ISO)

Of course, you also have to include a prototype with the same information into
your main procedure. In this case, you would use a /COPY member since other
programs may want to use a prototyped call to invoke our main program. The
name of the prototype does not need to match the name of your module if you
specify the EXTPGM keyword on the prototype definition. Note that one
advantage of using prototypes for this type of call is that the actual program or
procedure name can be “overridden” to a more meaningful name.

* Prototype for MyMainModule input parameters G

D MyMainModule PR ExtPgm('MAINMOD')
D InputDate D DatFmt(*ISO)
Subprocedures 45

3.5.3 Subprocedures using subprocedures
Since the ability to obtain a day name is useful to other programs in our system,
we extract this function as a subprocedure. Because this function requires the
input date to be converted into a day number, it invokes the DayOfWeek function
defined previously. The new subprocedure NameOfDay would be defined as
shown here:

* SubProcedure: NameOfDay (Name of the Day)
* The subprocedure accept a valid date (format *ISO) and return
* a string representing the name of the day B
P NameOfDay B

* procedure interface definition C
D NameOfDay PI 9
D WorkDate D Datfmt(*ISO)

* Days of the week name table - note no field names are required
D NameData DS
D 9 Inz('Monday')
D 9 Inz('Tuesday')
D 9 Inz('Wednesday')
D 9 Inz('Thursday')
D 9 Inz('Friday')
D 9 Inz('Saturday')
D 9 Inz('Sunday')
* Define the array as an overlay of the DS name
D Name 9 Dim(7) Overlay(NameData)

C Return Name(DayOfWeek(Workdate))

P E

Here is the prototype that is related to the NameOfDay subprocedure. As noted
previously, this prototype must be included in the calling procedure, and in the
subprocedure itself, unless the subprocedure is part of the same module as the
caller.

A main procedure is always exported, which means that other procedures in
the program can call the main procedure by using bound calls.

The call interface of a main procedure can be defined in one of two ways:

• Using a prototype and procedure interface
• Using an *ENTRY PLIST without a prototype

However, a prototyped call interface is much more robust since it provides
parameter checking at compile time. If you prototype the main procedure, you
also dictate how it is to be called. This is achieved by specifying either the
EXTPROC or EXTPGM keyword on the prototype definition:

• If EXTPGM is specified, then an external program call is used.
• If EXTPROC is specified, it will be called by using a bound procedure call.
• If neither keyword is specified the compiler will default to EXTPROC.

For more information on these keywords, see 3.6.1.2, “External naming” on
page 53. Note that is it not necessary that the called program uses a procedure
interface for the calling program to use a prototype and a CALLP. These two
options can be mixed with more traditional *ENTRY PLISTS and CALL/PARM
operations.

Coding considerations
46 Who Knew You Could Do That with RPG IV?

* Prototype for subprocedure NameofDay D

D NameOfDay PR 9
D InputDate D Datfmt(*ISO)

From the main procedure, the new procedure is invoked by this EVAL instruction:

* Using subprocedure NameOfDay, Retrieve the Name of the day from
* WorkDate E

C Eval DayName = NameOfDay(WorkDate)

3.5.4 Using an ILE Service Program
Since these two subprocedures may be useful in many other programs that use
dates, it would be a good idea to compile them into a separate module. In fact,
you may want to use them in an ILE Service Program, but the same principles
apply even if you want to simply bind the resulting module by copy. In the
following examples, you will see what we need to add to these subprocedures to
compile them as a separate module.

We will use the NOMAIN keyword on the H spec since this allows us to take
advantage of the cycleless feature of RPG IV that improves performance (see

A different approach to the last example would be to leave the two
subprocedures independent from each other and to use them together on the
same EVAL statement in the main Procedure, as follows:

* Using the Day number returned by subprocedure DayOfWeek from the
* WorkDate, retrieve the Day Name from subprocedure NameOfDay
C Eval DayName = NameOfDay(DayOfWeek(WorkDate))

To use the return value of a subprocedure as the input value of another one, on
the same free-form expression statement, you must specify the input
parameter of the second procedure as passed by the value.

Here is what the NameOfDay subprocedure would look like using the VALUE
keyword on the parameter definition:

* SubProcedure: NameOfDay (Name of the Day)
* The subprocedure accept a Day Number (Monday =1,...,Sunday = 7)
* and return a string representing the name of the day

PNameOfDay B

DNameOfDay PI 9
D WorkDay 1 0 Value

* Days of the week name table
DNameData DS
D Data 63 Inz('Monday Tuesday Wednesday-
D Thursday Friday Saturday Sunday
D Name 9 Dim(7) Overlay(Data)

C Return Name(WorkDay)

P E

Do not forget to change the prototype. More information on passing parameters
to subprocedures can be found in 3.6.2, “Parameter passing styles” on page
54.

An exercise for you
Subprocedures 47

marker H). Perhaps even more useful is the fact that by coding NOMAIN, we stop
the compiler from complaining that it cannot determine how the program will end.

A subprocedure may be exported, allowing it to be called from other modules. To
indicate that it is to be exported, you must specify the keyword EXPORT on the
Procedure Begin spec. If EXPORT is not specified, the subprocedure can only be
called from other procedures within the module.

When the subprocedures are moved to a different module, they can no longer
see the prototype definition placed in the main procedure. You must include a
copy of the prototype definition in the subprocedures module. The fact that these
prototypes are required in multiple places is the reason we strongly recommend
that you use the /COPY directive to bring in the prototype code. This way, you
can ensure the correct prototype is always used.

Using the preceding example, here is what the new service program module
would look like:

* DATESRVPG2 from SUBPROCSRC in RPGISCOOL
* Procedure example service program module
* H
H Nomain

* Include prototypes D
/Copy RPGISCOOL/SUBPROCSRC,DATESUBPR2

* Days of the week name table
D NameData DS
D 9 Inz('Monday')
D 9 Inz('Tuesday')
D 9 Inz('Wednesday')
D 9 Inz('Thursday')
D 9 Inz('Friday')
D 9 Inz('Saturday')
D 9 Inz('Sunday')
* Define the array as an overlay of the DS name
D Name 9 Dim(7) Overlay(NameData)

* SubProcedure: NameOfDay (Name of the Day)
* The subprocedure accept a valid date (format *ISO) and return
* a string representing the name of the day B
P NameOfDay B Export

* procedure interface definition C

The NOMAIN keyword is not required, but causes slightly smaller modules.
NOMAIN tells the compiler not to include any RPG cycle logic in this module.

The keyword is only allowed if and when there are no C specs in the source
member PRIOR TO the first subprocedure. In other words, NOMAIN can only
be used if there is no main procedure logic coded in this module.

If you specify NOMAIN, you cannot use the CRTBNDRPG command on the
source member. This is because the CRTBNDRPG command requires that the
module contain a program entry procedure. Only a main procedure can be a
program entry procedure.

Similarly, when using the CRTPGM command to create a program, keep in
mind that a NOMAIN module cannot be an entry module since it does not have
a program entry procedure.

NOMAIN
48 Who Knew You Could Do That with RPG IV?

D NameOfDay PI 9
D WorkDate D Datfmt(*ISO)

* Returning Name fron NameData table Data
* using DayOfWeek subprocedure E
C Return Name(DayOfWeek(Workdate))

P E

* SubProcedure: DayOfWeek (Day of the Week)
* The subprocedure accept a valid date (format *ISO) and return
* a number (1 digit) representing the day of the week
* (Monday = 1, ... , Sunday = 7) B
P DayOfWeek B Export

* procedure interface definition C
D DayOfWeek PI 1 0
D WorkDate D Datfmt(*ISO)

* Stand Alone Fields
D AnySunday S D Inz(D'1995-04-02')
D WorkNum S 7 0
D WorkDay S 1 0

C WorkDate Subdur AnySunday WorkNum:*D
C WorkNum Div 7 WorkNum
C Mvr WorkDay

* Returning result to the calling procedure A
C If WorkDay < 1
C Return WorkDay + 7
C Else
C Return WorkDay
C Endif

P E

In this example, the subprocedure DayOfWeek does not required the EXPORT
keyword since it is currently only used by the subprocedure NameOfDay, which is
located in the same module. We have chosen to export it so that we can make it
available to all of our programmers.

The main procedure would now look like this:

* DATEMAIN2 from SUBPROC in RPGISCOOL
* Main procedure: DATEMAIN2

* Stand Alone Fields
D DayName S 9

* Include prototype for Main procedure G
/Copy RPGISCOOL/SUBPROCSRC,DATEMAINPR2

* Include prototypes for subprocedures DayOfWeek and NameOfDay
/Copy RPGISCOOL/SUBPROCSRC,DATESUBPR2

* Program input parameter F
DDateMain2 PI
D WorkDate D DatFmt(*ISO)

* Using subprocedure DayName, Retrieve the Name of the day from
* WorkDate E
C Eval DayName = NameOfDay(WorkDate)

* Display the content of DayName
C DayName Dsply

* Terminate Program
C Eval *InLR = *On
Subprocedures 49

You do not want to forget to code the prototypes. This is the code for the main
procedure:

* DATEMAINPR2 from SUBPROCSRC in RPGISCOOL
* Main Program prototype G

D DateMain2 Pr
D WorkDate D DatFmt(*ISO)

These are the ones for the subprocedures:

* DATESUBPR2 from SUBPROCSRC in RPGISCOOL
* Prototype for subprocedure DayOfWeek D

D DayOfWeek PR 1 0
D InputDate D Datfmt(*ISO)

* Prototype for subprocedure NameofDay D

D NameOfDay PR 9
D InputDate D Datfmt(*ISO)

3.6 More on subprocedures

In this section, we show more features provided by the optional prototype
keywords and different ways of calling subprocedures.

3.6.1 The power of prototyping
Prototypes can do much more for you than simply defining the parameters to
subprocedures. By using some of the optional keywords for prototypes, you can
have the compiler check the number and type of parameters in your calling
program and procedures. It can even accommodate small types of mismatches,
such as passing an integer when the callee expects a value with decimal places,
for example:

DOvrDBFile PR ExtPgm('QCMDEXC')
D CmdString 3000 Options(*Varsize)
D Const
D CmdLength 15P 5 Const
D CmdOpt 3 Options(*NoPass)
D Const

To recreate this example on your system, you need to compile the two modules
using the following commands:

• For the service program (subprocedures module), use:

CRTRPGMOD MODULE(rpgiscool/datesrvpg2) SRCFILE(rpgiscool/subprocsrc)
CRTSRVPGM SRVPGM(rpgiscool/datesrvpg2)
MODULE(rpgiscool/datesrvpg2) EXPORT(*ALL)

• For the main procedure, use:

CRTRPGMOD MODULE(rpgiscool/datemain2) SRCFILE(rpgiscool/subprocsrc)
CRTPGM PGM(rpgiscool/datemain2) MODULE(rpgiscool/datemain2)
BNDSRVPGM(rpgiscool/datesrvpg2)

Then, use the following command to execute it:

CALL PGM(rpgiscool/datemain2) PARM('1998-05-28')

Try it yourself
50 Who Knew You Could Do That with RPG IV?

DCustMast S 100
DOverride1 C 'OVRDBF FILE('
DOverride2 C ') TOFILE('
DOverride3 C ') SHARE(*YES)'

C Eval CustMast = Override1+'CustMast'+
C Override2 + 'MyLibrary/CustMast' +
C Override3

C CallP OvrDBFile(CustMast : %Len(CustMast))

C Eval *InLR = *On

The use of the CONST keyword allows the compiler to accommodate a mismatch
in the definition of the parameters between the callee and the caller. For example,
this may happen when the callee expects a packed decimal value of five digits
with no decimal places and the caller wants to pass a three digit signed numeric.
Normally you would have to create a temporary variable (packed - five digits),
move the three digit number to it, and then pass the temporary field as the
parameter. When you use the CONST keyword, you are specifying that it is
acceptable that the compiler make a copy of the data prior to sending it, if
necessary, to accommodate these mismatches.

Another benefit of using CONST is that it also allows an expression to be passed
as a parameter. For further information, see 3.6.2, “Parameter passing styles” on
page 54.

The use of the option *NOPASS on the OPTIONS keyword means the parameter
does not have to be passed on the call. Any parameters following that spec must
also have *NOPASS specified. When the parameter is not passed to a program or
procedure, the called program or procedure will simply function as if the
parameter list did not include that parameter. When parameters are not
mandatory, you can also use the option *OMIT, which indicates the value *OMIT
is allowed for that parameter when calling the subprocedure. *OMIT is only
allowed for CONST parameters and parameters that are passed by reference.

Other options on the OPTIONS keyword are *VARSIZE, *STRING, and
*RIGHTADJ. For more information on this keyword, refer to ILE RPG for AS/400
Reference, SC09-2508.

3.6.1.1 Converting the date format
In this example, we combined the CONST and DATFMT keywords. As a result,
the compiler can generate a temporary (hidden) date field in the calling program
or procedure, if necessary, to convert the date format used in the caller to the
format used in the called subprocedure.

This is based on the example used in 3.4, “Moving from subroutines to
subprocedures” on page 39, where we used the date format *ISO on all our dates
definitions. Suppose that we wanted to use the DayOfWeek procedure from a
program that defines its date fields as having the *USA format. All we need to do
is to modify the date subprocedures so that they included the CONST keyword on
the parameter definitions in the procedure interface and prototypes. Once we
recompile the subprocedures and rebuild the service program, we can safely call
using the *USA date field.

This is how the modified prototypes look:

* DATESUBPR3 from SUBPROCSRC in RPGISCOOL
* Prototype for subprocedure DayOfWeek
Subprocedures 51

D DayOfWeek PR 1 0
D InputDate D Datfmt(*ISO) Const

* Prototype for subprocedure DayName
D NameOfDay PR 9
D InputDate D Datfmt(*ISO) Const

We also need to modify the Procedure Interface (PI) of those two subroutines to
reflect the changes made in the prototype:

* DATESRVPG3 from SUBPROCSRC in RPGISCOOL
* Procedure example service program module
* H
H Nomain

* Include prototypes D
/Copy RPGISCOOL/SUBPROCSRC,DATESUBPR3

Note: The full version of the code can be seen in 3.5.4, “Using an ILE Service
Program” on page 47.

* SubProcedure: NameOfDay (Name of the Day)
* The subprocedure accept a valid date (format *ISO) and return
* a string representing the name of the day B
P NameOfDay B Export

* procedure interface definition C
D NameOfDay PI 9
D WorkDate D Datfmt(*ISO) Const

Note: The full version of the code can be seen in 3.5.4, “Using an ILE Service
Program” on page 47.

* SubProcedure: DayOfWeek (Day of the Week)
* The subprocedure accept a valid date (format *ISO) and return
* a number (1 digit) representing the day of the week
* (Monday = 1, ... , Sunday = 7) B
P DayOfWeek B Export

* procedure interface definition C
D DayOfWeek PI 1 0
D WorkDate D Datfmt(*ISO) Const

Note: The full version of the code can be seen in 3.5.4, “Using an ILE Service
Program” on page 47.

Here is the main procedure presented above, modified to use a *USA date
format:

* DATEMAIN3 from SUBPROC in RPGISCOOL
* Main procedure: DATEMAIN3

* Stand Alone Fields
D DayName S 9

* Include prototype for Main procedure G
/Copy RPGISCOOL/SUBPROCSRC,DATEMAINPR3

* Include prototypes for subprocedures DayOfWeek and NameOfDay
/Copy RPGISCOOL/SUBPROCSRC,DATESUBPR3

* Program input parameter F
DDateMain3 PI
D WorkDate D DatFmt(*USA)

* Using subprocedure DayName, Retrieve the Name of the day from
* WorkDate E
C Eval DayName = NameOfDay(WorkDate)

* Display the content of DayName
C DayName Dsply
52 Who Knew You Could Do That with RPG IV?

* Terminate Program
C Eval *InLR = *On

Of course, we also modified the prototype of the main procedure:

DATEMAINPR3 from SUBPROCSRC in RPGISCOOL
* Main Program prototype G
D DateMain3 Pr
D WorkDate D DatFmt(*USA)

3.6.1.2 External naming
Another feature of prototypes is the use of the EXTPGM and EXTPROC
keywords. Note that ILE procedure names can be up to 128-bytes long and can
be of mixed case. Typically, mixed case names are used only in procedures
written in C. Since we can use prototypes to call C functions, it is important to
understand the use of the EXTPROC keyword to accommodate the mixed case
names typical of C functions.

If the keyword EXTPGM or EXTPROC is specified on the prototype definition, any
calls to the program or procedure use the external name specified. If neither
keyword is specified, then the external name is the prototype name, which is, the
name specified in positions 7 through 21 of the Prototype PR definition and
converted to uppercase.

DMyProcName PR ExtProc('A_Really_Long_Name()')
D ProcParm1

DAProgName PR ExtPGM('QODDNAME')
D Parm1

C CallP MyProcName(ProcParm1)

C CallP AProgName(Parm1)

To recreate this example on your system, you need to compile the two modules
using the following commands:

• For the service program (subprocedures module), use:

CRTRPGMOD MODULE(rpgiscool/datesrvpg3) SRCFILE(rpgiscool/subprocsrc)
CRTSRVPGM SRVPGM(rpgiscool/datesrvpg3)
MODULE(rpgiscool/datesrvpg3) EXPORT(*ALL)

• For the main procedure, use:

CRTRPGMOD MODULE(rpgiscool/datemain3) SRCFILE(rpgiscool/subprocsrc)
CRTPGM PGM(rpgiscool/datemain3) MODULE(rpgiscool/datemain3)
BNDSRVPGM(rpgiscool/datesrvpg3)

Then, use the following command to execute it:

CALL PGM(rpgiscool/datemain3) PARM('05/28/2000')

Try it yourself
Subprocedures 53

3.6.2 Parameter passing styles

Program calls, including system API calls, require that parameters be passed by
reference. However, there is no such requirement for procedure calls. ILE RPG
allows three methods for passing and receiving prototyped parameters:

• By reference (default)
• By value (keyword VALUE on the parameter definition)
• By read-only reference (keyword CONST on the parameter definition)

Parameters that are not prototyped may only be passed by reference.

3.6.2.1 Passing by reference
The default parameter passing style for RPG IV is to pass by reference. When a
parameter is passed by reference, the compiler only passes a (hidden) pointer to
the data value, rather than passing the actual value. Consequently, you do not
have to code any keywords on the parameter definition to pass the parameter in
this way. You must pass parameters by reference to a procedure when you
expect the callee to modify the field passed. You may also want to pass by
reference to improve run-time performance, for example, when passing large
character fields.

Note that parameters that are passed on external program calls can only be
passed by reference. It is not possible to pass a parameter by value to a *PGM
object.

3.6.2.2 Passing by value: Keyword VALUE
With a prototyped procedure, you can pass a parameter by value instead of by
reference. When a parameter is passed by value, the compiler passes the actual
data to the called procedure.

It is possible to create an RPG IV subprocedure that exports a mixed-case
name. You may need to do this if, for example, you are writing a user exit point
for a system designed with C programmers in mind, or if you want to convince
people that you wrote all of your routines in C.

All you need to do is to code the EXTPROC keyword on the prototype for your
subprocedure. The compiler will export the name in mixed case as specified.

* This prototype will export the name ’MixedCase’
D MixedCase Pr ExtProc('MixedCase')

* This one will export the name ’MIXEDCASE’
D MixedCase Pr

A case of mixed case

OS/400 program calls can only pass parameters by reference and by read-only
reference, not by value. The keyword CONST should be use with every input
parameter on the OS/400 API prototypes definition.

Note
54 Who Knew You Could Do That with RPG IV?

Passing by value allows you to:

• Pass literals and expressions as parameters.

• Pass parameters that do not match exactly the type and length that are
expected. Value parameters must match the type specified in the prototype.
However, the format may be different.

• Pass a variable that, from the caller's perspective, will not be modified.

When a parameter is passed by value, the called program or procedure can
change the value of the parameter. But, the caller will never see the changed
value.

One primary use for passing by value is that it allows for less stringent matching
of the attributes of the passed parameter. For example, if the definition calls for a
numeric field of type packed-decimal and a length of 5 with two decimal positions,
you must still pass a numeric value. It can be any of the following options:

• A packed, zoned, or binary constant or variable, with any number of digits and
number of decimal positions

• A built-in function returning a numeric value

• A subprocedure returning a numeric value

• A complex numeric expression such as

2 * (Min(Length(First) + Length(Last) + 1): %size(Name))

3.6.2.3 Passing by read-only reference: Keyword CONST
An alternative means of passing a parameter to a prototyped procedure or
program is to pass it by read-only reference. This method is also known as
constant reference. Passing parameters this way is useful if you must pass the
parameter by reference and you know that the value of the parameter will not be
changed during the call. For example, many system APIs have read-only
parameters specifying formats or lengths.

Passing a parameter by read-only reference has many of the same advantages
as passing by value. In particular, this method allows you to pass literals and
expressions. However, it is important that you know that the parameter would not
be changed during the call.

When a parameter is passed by read-only reference, the compiler may copy the
parameter to a temporary field and pass the address of the temporary field. This
would happen whenever the parameter passed is not a strict match to the
prototype. For example, the passed parameter is an expression or the passed
parameter has a different format.
Subprocedures 55

3.6.3 Using procedure pointer calls
Up to this point, all of our examples of calling subprocedures have used static
procedure calls, also known as bound calls. It is also possible to call
subprocedures via procedure pointers. Any procedure that can be called by using
a static procedure call can also be called through a procedure pointer.

Procedure pointer calls provide a way to call a procedure dynamically. For
example, you can pass a procedure pointer as a parameter to another procedure,
which would then run the procedure that is specified in the passed parameter.
You can also manipulate arrays of procedure names or addresses to dynamically
route a procedure call to different procedures. If the called procedure is in the
same activation group, the speed of a procedure pointer call is almost identical to
that of a static procedure call.

To demonstrate the use of procedure pointer calls, we are going to revisit our
date routines one more time. We are going to produce a second version of the
NameOfDay subprocedure, which provides the name of the day in French. We
will then modify our main program to ask the user if they want the results
displayed in English or in French. While this may not be the most practical use of
procedure pointer, hopefully it will help you to understand the basic principles
involved.

3.6.3.1 Modifying the subprocedure and its prototypes
We start by modifying the prototypes to accommodate the additional
subprocedure. As you can see in the following revised source, we have taken the
opportunity to demonstrate how an RPG IV subprocedure can export its name in
mixed-case (see also 3.6.2, “Parameter passing styles” on page 54).

* DATESUBPR4 from SUBPROCSRC in RPGISCOOL

* Prototype for subprocedure DayOfWeek
D DayOfWeek PR 1 0
D InputDate D Datfmt(*ISO) Const

* Prototype for subprocedure DayName
D NameOfDay PR 9 ExtProc('NameOfDay')
D InputDate D Datfmt(*ISO) Const

* Prototype for subprocedure NomduJour
D NomDuJour PR 9 ExtProc('NomDuJour')
D InputDate D Datfmt(*ISO) Const

Our new subprocedure NomDuJour has an identical interface to the one for
NameOfDay. This is essential since there will only be a single one invocation

If the called program or procedure is compiled using a prototype in a language
that enforces the read-only reference method (either RPG IV using a
prototyped procedure interface or C), the compiler prevents the parameter from
being changed.

If the called program or procedure does not or cannot use a prototype, for
example an RPG/400 program, the compiler cannot ensure that the parameter
will not be changed. For this reason, you should exercise caution when
defining prototypes using this parameter-passing method.

Note
56 Who Knew You Could Do That with RPG IV?

point. Therefore, the parameter and return value should be identical. We could
get some really interesting results if they were different.

NomDuJour is almost identical to NameOfDay. The only significant change, other
than the name of the subprocedure, is the values used for the days of the week.
For this reason, we are not including the source here. You can find it with the
other sources in RPGISCOOL/SUBPRCSRC, member name DATESRVPG4.

A new prototype
One problem with using procedure pointers to call a subprocedure is that you
cannot use the same prototype to describe the interface that was used in the
subprocedure itself. Look at the following code, and you can see why.

Note: The markers 1 through 2 are defined immediately after this source code
example.

* DATESUBPR5 from SUBPROCSRC in RPGISCOOL

* Prototype for NomduJour & NameofDay called via procedure pointer
D Name PR 9 ExtProc(ProcToCall@) 1
D InputDate D Datfmt(*ISO) Const

* Constants for procedure pointers to NameOfDay and NomDuJour
D NomDuJour@ C %PAddr('NomDuJour') 2
D NameofDay@ C %PAddr('NameOfDay')

1 Notice that while this prototype uses the ExtProc keyword, as did the originals
for NameOfDay and NomDuJour, the name in parentheses is the name of a
procedure pointer and not the name of a specific subprocedure.

2 The actual procedure pointers to be used are supplied by the two constants,
which specify the mixed-case names that we previously arranged to have the
subprocedures export.

Modifying the main program
The main program needs to be modified in a number of areas to pose the
"English or French" question and select the appropriate subprocedure based on
the response. The specific changes are identified in the following code.

Note: The markers 1 through 6 are defined immediately after this source code
example.

* DATEMAIN4 from SUBPROCSRC in RPGISCOOL

* Stand Alone Fields
D DayName S 9

* Include prototype for Main procedure
/Copy RPGIsCool/SubProcSrc,DATEMAINP4

* Include proc pointer prototype for NameOfDay/NomDuJour 1
/COPY RPGIsCool/SubProcSrc,DATESUBPR5

* Data for English/French question - default reply to French 2
D Question C 'In English (E) ou Francais (F)'
D Reply S 1A Inz('F')

D ProcToCall@ S * ProcPtr 3

* Program input parameter
D DateMain4 PI
D WorkDate D DatFmt(*USA)

* Ask if the response is to be in English or French 4
C Question Dsply Reply
C Select
Subprocedures 57

C When Reply = 'F' or Reply = 'f' 5
C Eval ProcToCall@ = NomDuJour@

C Other
C Eval ProcToCall@ = NameofDay@
C EndSl

* Using the appropriate subprocedure, Retrieve the Name of the day
C Eval DayName = Name(WorkDate) 6

* Display the content of DayName
C DayName Dsply

* Terminate Program
C Eval *InLR = *On

1 /Copy in the procedure pointer version of the prototypes.

2 This is the text for the message to the user asking them to select the language
for the response. The actual question is asked at 4. The reply value is pre-set
to "F" (French). This is the value that will be used if the user simply presses
Enter.

3 This is the definition of the procedure pointer that will be used to invoke the
subprocedure. Note that it must have the same name that was used for the
ExtProc keyword on the prototype.

4 The user is asked to select the language.

5 If the user responds that they want to select French, the procedure pointer for
NomDuJour is loaded into ProcToCall@. If they enter any other value, the
procedure pointer for NameOfDay will be used instead.

6 The subprocedure is now invoked and the resulting name value is displayed to
the user.

3.6.3.2 Subprocedure calls
Table 1 summarizes the different types of calls and the parameter options
available for each type. An "X" in a particular cell indicates that such a

You can recreate the above examples by using these commands:

• Create a module for the procedures to be called via the procedure pointer
call:

CRTRPGMOD SRCFILE(rpgiscool/subprocsrc) SRCMBR(datesrvpg4)
MODULE(rpgiscool/datesrvpg4)

• Create a module for the main program:

CRTRPGMOD SRCFILE(rpgiscool/subprocsrc) SRCMBR(datemainp4)
MODULE(rpgiscool/datemainp4)

CRTPGM PGM(rpgiscool/datemainp4) MODULE(datemainp4 datesrvpg4)

To execute each program, enter:

CALL rpgiscool/datemainp4 parm(’07-02-99’)

Try it yourself
58 Who Knew You Could Do That with RPG IV?

combination of a call and parameter option is allowed. For example, you can use
*OMIT as a parameter to a CALLB, but not to a CALL.

Table 1. Call types and options

CALL CALLB CALLP
ExtPgm

CALLP
ExtProc

Expr.

Dynamic Call X X

Static/Bound
Call

X X X

Fixed Format X X

Free Format X X X

Uses Prototype X X X

Return Value X

Parms by Ref. X X X X X

Parms by value X X

*CONST X X

*VARSIZE X X X

*OMIT X X X

*NOPASS X X X

A static procedure call is a call to an ILE procedure where the name of the
procedure is resolved to an address during binding, therefore, the term static.
As a result, run-time performance using static procedure calls is faster than
run-time performance using conventional dynamic program calls.

Static calls allow operational descriptors, omitted parameters, and they extend
the limit (to 399) on the number of parameters that are passed.

Static call

Exception handling within a subprocedure differs from a main procedure
primarily because there is no default exception handler for subprocedures. As
a result, situations where the default handler would be called for a main
procedure correspond to an abnormal end of the subprocedure.

Exception handling in subprocedures
Subprocedures 59

60 Who Knew You Could Do That with RPG IV?

Chapter 4. An ILE guide for the RPG programmer

This chapter illustrates essential functions of the Integrated Language
Environment (ILE). Examples are provided for the following topics:

• How to create programs and service programs from modules and other
service programs

• How to use activation groups meaningfully and avoid some inconveniences
that may result from their careless use

• How to handle errors using a condition handler program for ILE programs

To take full advantage of ILE, you should also understand RPG IV’s
subprocedures as discussed in Chapter 3, “Subprocedures” on page 31.

4.1 An introduction to ILE

The Integrated Language Environment (ILE) is a new programming model as
compared to the Original Programming Model (OPM). It was introduced with the
operating system release V2R3 for the C language and with release V3R1 for the
RPG IV language. New concepts have been introduced with the ILE programming
model:

• New object types (modules, service programs, binding directories).

• A substructure of the job structure called an activation group. An activation
group is created when an ILE program or a service program is started or
activated.

• New CL commands that enable collecting (binding) the objects together to
work in activation groups.

The foundation of ILE and how it relates to RPG are explained in 1.4, “The
relationship between the RPG IV language and ILE” on page 14. Modules,
service programs, binding directories, activation groups, and the CL commands
that pull them all together are explained in the following sections.

4.1.1 Modules and binding
Modules are objects of *MODULE type that are created by the compiler when the
Create RPG Module (CRTRPGMOD) command is performed. A module can be
composed of a main procedure (also referred to as main program) or one or more
subprocedures. The term “procedure” often designates a subprocedure or a main
procedure.

A module is sometimes called “compilation unit” since it comes from compilation
of one source member. Modules are not executable. They only serve as building
blocks for program creation. The process of program creation is called binding.
Bound programs are executable objects of *PGM type.

To bind modules into a program, the Create Program (CRTPGM) command is
used. If an RPG IV program does not call subprocedures, or external modules,
the Create Bound RPG Program (CRTBNDRPG) command works for both
compilation and binding. This is the case, for example, of an RPG IV program
resulting from converting an RPG III program by the Convert RPG Source
(CVTRPGSRC) command.
© Copyright IBM Corp. 2000 61

4.1.2 Service programs
If you have procedures that are called by more than one program, you could bind
them individually to each of the programs. In such a case, they would occupy
space in each program and would be difficult to maintain. If you group the
procedures in a service program instead, the procedures occur only once and
can be easily maintained.

Service programs are objects of *SRVPGM type, which are created by the Create
Service Program (CRTSRVPGM) command. A service program is simply a
collection of modules especially those containing subprocedures. Service
programs cannot be directly called. However, the procedures contained in it may
be called by ILE programs.

Service programs are built by binding, much like programs. But, they need to be
further bound to a program before they are used. This is done by using the
CRTPGM command.

Service programs can also be bound to other service programs. The top service
program in such a group is eventually bound to a program using the CRTPGM
command.

4.1.3 Export and import
A service program makes its own modules and procedures available to external
users through a mechanism called export. The external users are modules and
subprocedures in external programs and other service programs that use (call)
the modules and subprocedures of the service program to call them. The external
users are also called public or clients.

Main procedures of modules comprising the service program are exported
automatically (implicitly). The programmer does not need to use any special
specifications to make a main procedure available to external users.

A service program exports its own subprocedures by specifying the EXPORT
keyword in the subprocedure definition. However, to bring this specification in
effect, the binding command (CRTSRVPGM) specifies which of the exported
procedures are actually made available to external users.

Besides modules and subprocedures, variables may be exported by specifying
the EXPORT keyword. Exported modules, subprocedures, and variables are
collectively called exports. Exports are used in other procedures to which they
are referred. The references are also called imports as opposed to the exports,
which are sometimes called definitions.

4.1.4 Binder language source
The Create Service Program (CRTSRVPGM) command specifies how the service
program is bound and what procedures and variables it exports. The EXPORT
parameter of the command specifies how the exports are made available to the
external users:

• EXPORT(*SRCFILE) is the default and requires that a special source member
exists. The source member, called binder language source, contains a list of
exported subprocedure names (and possibly variable names) that the service
program actually makes available. The other exports of the service program
62 Who Knew You Could Do That with RPG IV?

(except for module names) remain inaccessible to external users. The source
member has a BND source type and is placed in a source file (the default is
QSRVSRC). The binder source member is never compiled.

• EXPORT(*ALL) makes available all exports from the service program.
Generally, we recommend that you do not use EXPORT(*ALL) because it
makes maintenance difficult.

4.1.5 Binding directories
Binding directories are objects of *BNDDIR type. Binding directories can be used
as an additional source of exports. A binding directory contains a list of modules
and service programs that are candidates for automatic binding.

Not all items of the list in the binding directory are necessarily bound. Only those
required by imports that cannot otherwise be resolved are bound. Modules and
service programs listed in a binding directory often contain standard procedures,
for example, mathematical functions or other system procedures. Programmers
can create their own binding directories using special CL commands.

4.1.6 Activation groups
Activation groups are temporary storage structures placed inside jobs (which
themselves are also temporary structures). There are three types of activation
groups:

• Default
• Named
• New

Default activation groups exist automatically and are never deleted. There are
two default activation groups. Many system programs run in the default activation
group 1. RPG IV programs created with the parameter DFTACTGRP(*YES) of the
CRTBNDRPG command run in the default activation group 2. In this chapter, we
use the name “default activation group” for the activation group 2.

The other types of activation groups are specified by the parameter ACTGRP in
the program and service program creation commands CRTPGM and
CRTSRVPGM. Thus, the type of an activation group is determined by the
program or service program at creation time.

An activation group is created when the program is started. An activation group
may include:

• Static and automatic variables
The variables of programs running in the activation group. Static variables are
those defined in a main procedure. They come from external sources such as
DDS or SQL specifications, or they are defined as RPG variables (fields,
indicators). One more place you will find static variables is as local variables in
subprocedures declared with the STATIC keyword. Automatic variables are
local variables defined in subprocedures.

• Open data paths (ODP)
Temporary objects representing open files to programs. Data buffer and
pointer to a record are part of the ODP.

• Dynamically allocated storage
Temporary object created by the ALLOC operation in the RPG IV program.
An ILE guide for the RPG programmer 63

• Error handling routines
System or user programs (modules) handling error messages. Programmers
can write their own modules to handle error messages coming from any
procedure in the call stack, no matter in which programming language the
procedure is written. Notice that the “program stack” has been renamed to
“call stack”. For more information, go to 4.2.7, “Call stack and error handling”
on page 99.

4.1.7 CL commands used with ILE and RPG
There are four basic commands that are used to create ILE modules, programs
and service programs:

• Create RPG Module (CRTRPGMOD) command
Invokes the ILE RPG compiler, which produces the *MODULE object.

• Create Program (CRTPGM) command
Invokes the ILE binder (independent of the programming language) and
creates the *PGM program object from specified modules and service
programs.

• Create Service Program (CRTSRVPGM) command
Invokes the ILE binder (also independent of the programming language) and
creates the *SRVPGM object from specified modules and other service
programs.

• Create Bound RPG Program (CRTBNDRPG) command
Creates a module object in the QTEMP library and creates a *PGM program
object from the module. Of course, the module is lost after the job ends.

Other commands enable change, display or delete functions. Very useful display
commands include:

• Display Module (DSPMOD) command
Displays module information on the screen or printer.

• Display Service Program (DSPSRVPGM) command
Displays service program information on the screen or a printer.

• Display Program (DSPPGM) command
Displays program information on the screen or a printer.

The following commands help to create binding directories that can be referred to
by the CRTSRVPGM as a source of suitable exports:

• Create Binding Directory (CRTBNDDIR) command
Creates a *BNDDIR object to be specified in the BNDDIR parameter of the
CRTSRVPGM command.

• Add Binding Directory Entry (ADDBNDDIRE) command
Adds entries (module or service program names) to the binding directory.

• Work with Binding Directory Entries (WRKBNDDIRE) command
Displays binding directory entries (module or service program names) on the
screen so you can maintain them.

Other commands serve to binding directories and their entries (delete and display
commands).
64 Who Knew You Could Do That with RPG IV?

4.2 ILE tips for the RPG programmer

This section illustrates the following ILE concepts when used with RPG IV:

• Various methods to create ILE programs from modules and service programs
• Export and import of external symbols
• Service program signatures and their relation to programs
• Activation group creation and deletion, as well as shared open data paths and

overrides
• ILE specific error message handling program

4.2.1 Creating programs from modules (binding by copy)
In this part, short examples are presented to illustrate various methods of
program creation. The sample programs are intentionally simple so we can
concentrate on the mechanics of binding rather than on program logic.

We use different calls: CALLB, CALLP, and function call. Differences between
these types of calls are discussed in 3.3.4, “Calling your subprocedures” on page
38, and in the ILE RPG for AS/400 Programmer's Guide, SC09-2507.

4.2.1.1 A main procedure calls another main procedure (CALLB)
Two separate modules, M01 and M01A, are created from two source members
which are bound into a program.

Module M01
Module M01 is compiled from the following source:

* M01 from ILESRC in RPGISCOOL
*
* CALLB to M01A bound module

* Data definitions

D String S 100A Inz('111*1') Varying
D Position S 5S 0
D NonDigTxt S 30A Inz('Non-digit in position')
D AllDigits S 30A Inz('All digits in string')

* Main procedure

C CallB 'M01A'
C Parm String
C Parm Position

C If Position <> 0
C NonDigTxt Dsply Position
C Else
C AllDigits Dsply
C EndIf

C Eval *InLR = *On

Module M01 calls module M01A with the CALLB operation. The CALLB operation
uses two parameters. The second parameter Position contains the result of the
call.
An ILE guide for the RPG programmer 65

Module M01A
Module M01A is compiled from the following source:

* M01A from ILESRC in RPGISCOOL
*
* main procedure (no subprocedures)

* Data definitions

D String S 100A Varying
D Position S 5S 0

* Entry parameter list

C *Entry PList
C Parm String
C Parm Position

* Main procedure

C '0123456789' Check String:1 Position

C Eval *InLR = *On

Module M01A accepts two parameters from the calling module and passes the
result back through the Position parameter.

The two modules, M01 and M01A, are compiled with the Create RPG Module
(CRTRPGMOD) command and then bound into the program P01 by the Create
Program (CRTPGM) command. This form is called bind by copy because the
compiled code from the modules is physically copied into the resulting program.
Note that no EXPORT keyword is needed for exporting the module names M01
and M01A because they are both main procedures.

4.2.1.2 A main procedure calls a subprocedure as a function
Two modules, M02 and M02A, are created from two source members and bound
into a program P02.

Compilation of the two modules can be done by using the following two
commands:

CRTRPGMOD MODULE(RPGISCOOL/M01) SRCFILE(RPGISCOOL/ILESRC)
CRTRPGMOD MODULE(RPGISCOOL/M01A) SRCFILE(RPGISCOOL/ILESRC)

Then, use the following command to bind the two modules together into the
program P01:

CRTPGM PGM(RPGISCOOL/P01) MODULE(RPGISCOOL/M01 RPGISCOOL/M01A)
ENTMOD(*FIRST) ACTGRP(QILE)

The ENTMOD parameter says that the first module, M01, gets control when the
program P01 is started.

Use the following command to run the program:

CALL PGM(RPGISCOOL/P01)

Try it yourself
66 Who Knew You Could Do That with RPG IV?

Module M02
Module M02 is compiled from the following source:

* M02 from ILESRC in RPGISCOOL
*
* function call to module M02A

* Data definitions

D String S 100A Inz('111*1') Varying
D Position S 3P 0
D NonDigTxt S 30A Inz('Non-digit in position')
D AllDigits S 30A Inz('All digits in string')

* Prototype for procedure NonDigit
/COPY RPGISCOOL/ILESRC,CPYM02A

* Main procedure

C If NonDigit(String : Position)
C NonDigTxt Dsply Position
C Else
C AllDigits Dsply
C EndIf

C Eval *InLR = *On

Module M02 calls the subprocedure NonDigit in the IF statement as a function
that returns a value. The value is *OFF if no non-digit character in the string is
found or *ON if one exists. The position number of the first non-digit character is
available in the second parameter.

Module M02A
Module M02A does not contain a main procedure so it specifies the NOMAIN
keyword. It contains only the subprocedure NonDigit. Module M02A is compiled
from the following source:

* M02A from ILESRC in RPGISCOOL
*
* function NonDigit

H Nomain

* Procedure prototype
/COPY RPGISCOOL/ILESRC,CPYM02A

* Procedure definition

P NonDigit B EXPORT
* Procedure interface (must match the prototype)
D NonDigit PI 1N
D String 100A Value Varying
D Position 3P 0

C '0123456789' Check String:1 Position
C Return %Found

P NonDigit E

Note the EXPORT keyword which must be specified to make the procedure
NonDigit accessible to the module (main procedure) M02. Note also that the
function returns not only the return value (*ON or *OFF) but also passes the
Position parameter by reference. Therefore, the calling module M02 can use it.
An ILE guide for the RPG programmer 67

Prototype CPYM02A
This prototype is used as a copy member by both modules M02 and M02A:

* CPYM02A from ILESRC in RPRISCOOL
* Prototype for procedure NonDigit

D NonDigit Pr 1N
D String 100A Value Varying
D Position 3P 0

4.2.1.3 A main procedure calls a nonfunction subprocedure (CALLP)
Two separate modules, M03 and M03A, are created from two source members
and bound into a program P03.

Module M03
Module M03 is compiled from the following source:

* M03 from ILESRC in RPGISCOOL
*
* CALLP to a subprocedure in module M03A

* Data definitions

D String S 100A Inz('111*1') Varying
D Position S 3P 0
D NonDigTxt S 30A Inz('Non-digit in position')
D AllDigits S 30A Inz('All digits in string')

* Prototype for procedure NonDi

D NonDi Pr
D 100A Value Varying
D 3P 0

* Main procedure

C CallP NonDi (String : Position)

C If Position <> 0
C NonDigTxt Dsply Position
C Else

Compilation of the two modules can be done by using the following two
commands:

CRTRPGMOD MODULE(RPGISCOOL/M02) SRCFILE(RPGISCOOL/ILESRC)
CRTRPGMOD MODULE(RPGISCOOL/M02A) SRCFILE(RPGISCOOL/ILESRC)

Then, use the following command to bind the two modules together into the
program P02:

CRTPGM PGM(RPGISCOOL/P02) MODULE(RPGISCOOL/M02 RPGISCOOL/M02A)
ENTMOD(*FIRST) ACTGRP(QILE)

The ENTMOD parameter says that the first module, M02, gets control when the
program P02 is started.

Use the following command to run the program:

CALL PGM(RPGISCOOL/P02)

Try it yourself
68 Who Knew You Could Do That with RPG IV?

C AllDigits Dsply
C EndIf

C Eval *InLR = *On

Module M03 calls the procedure NonDi that has the same purpose as the function
NonDigit in the previous example. The call is now accomplished by the CALLP
statement that does not return any value. It provides the result of the call in the
second parameter Position passed by reference. If the input string contains a
non-digit character, the second parameter contains its position number
(non-zero). Otherwise, it contains zero.

Module M03A
Module M03A does not contain a main procedure so it specifies the NOMAIN
keyword. It contains only the subprocedure NonDi. Module M03A is compiled
from the following source:

* M03A from ILESRC in RPGISCOOL
*
* subprocedure - no function

H Nomain

* Procedure prototype

D NonDi Pr
D 100A Value Varying
D 3P 0

* Procedure definition

P NonDi B EXPORT
* Procedrure interface (must match the prototype)
D NonDi PI
D String 100A Value Varying
D Position 3P 0

C '0123456789' Check String:1 Position

P NonDi E

Note that the EXPORT keyword must be specified to make the procedure NonDi
accessible to the module (main procedure) M03.
An ILE guide for the RPG programmer 69

4.2.1.4 Passing data by EXPORT and IMPORT between two modules
This method of passing data between modules is presented here only as a
supplement to other methods. It is not usually needed. It could be used, for
example, for passing data to a program that is called indirectly through an
intermediate program that needs this data. Such a requirement indicates poor
program design.

Two separate modules, M04 and M04A, are created from two source members
and bound into a program P04.

Module M04
Module M04 is compiled from the following source:

* M04 from ILESRC in RPGISCOOL
*
* CALLB to M04A bound module - export variables

* Data definitions

D String S 100A Inz('111*1') Varying
D EXPORT
D Position S 3P 0
D EXPORT

D NonDigTxt S 30A Inz('Non-digit in position')
D AllDigits S 30A Inz('All digits in string')

* Main procedure

C CallB 'M04A'

C If Position <> 0
C NonDigTxt Dsply Position
C Else
C AllDigits Dsply
C EndIf

C Eval *InLR = *On

This time, the first module, M04, does not use any parameters. It exports its two
variables designated as EXPORT, instead, to make them accessible by the other

Compilation of the two modules can be done by using the following two
commands:

CRTRPGMOD MODULE(RPGISCOOL/M03) SRCFILE(RPGISCOOL/ILESRC)
CRTRPGMOD MODULE(RPGISCOOL/M03A) SRCFILE(RPGISCOOL/ILESRC)

Then, use the following command to bind the two modules together into the
program P03:

CRTPGM PGM(RPGISCOOL/P03) MODULE(RPGISCOOL/M03 RPGISCOOL/M03A)
ENTMOD(*FIRST) ACTGRP(QILE)

The ENTMOD parameter says that the first module, M03, gets control when the
program P03 is started.

Use the following commands to run the program:

CALL PGM(RPGISCOOL/P03)

Try it yourself
70 Who Knew You Could Do That with RPG IV?

module. The CALLB bound call is used to call the module M04A. Notice that
EXPORT is specified in the module where the CALLB operation is used.

Module M04A
Module M04A is compiled from the following source:

* M04A from ILESRC in RPGISCOOL
*
* main procedure - import variables

* Data definitions

D String S 100A Varying
D IMPORT
D Position S 3P 0
D IMPORT

* Main procedure

C '0123456789' Check String:1 Position

C Eval *InLR = *On

The module M04A accepts two variables exported from the module M04 through
the CALLB operation and processes them. Note that the variables (String and
Position) are designated by the IMPORT keyword and have the same names in
both modules.

This type of passing values between modules should not be used altogether. If
still used, take care in maintenance because it represents "hidden parameters".
Such hidden passing may be also more difficult to debug than passing regular
parameters.

4.2.2 Creating service programs and binding by reference
The examples in this section show how the modules and procedures are bound
into service programs. Remember that service programs cannot be directly
called. They need to be bound to a program. This kind of binding is called "bind
by reference". After the program is bound, it contains the service program name

Compilation of the two modules can be done by using the following two
commands:

CRTRPGMOD MODULE(RPGISCOOL/M04) SRCFILE(RPGISCOOL/ILESRC)
CRTRPGMOD MODULE(RPGISCOOL/M04A) SRCFILE(RPGISCOOL/ILESRC)

Then, use the following command to bind the two modules together into the
program P04:

CRTPGM PGM(RPGISCOOL/P04) MODULE(RPGISCOOL/M04 RPGISCOOL/M04A)
ENTMOD(*FIRST) ACTGRP(QILE)

The ENTMOD parameter says that the first module, M04, gets control when the
program P04 is started.

Use the following command to run the program:

CALL PGM(RPGISCOOL/P04)

Try it yourself
An ILE guide for the RPG programmer 71

and the names of the program’s imports that correspond to names exported from
the service program. These import names are called references and are resolved
into pointers (addresses) at program activation time when the program is started,
not earlier. The program does not contain a copy of the service program code.

In the following examples, there are two elementary procedures and a third
procedure that uses them. We show how the three procedures (subprocedures)
can be arranged in service programs and used in a program.

The first elementary procedure is DynEdit, which performs dynamic editing. It
edits a 15-digit packed number defined with 0 decimal positions (15 0), as if it had
a different number of decimal positions. This is sometimes needed in application
packages where all numbers in database files are defined as (15 0) and the
number of decimal positions is stored in separate numeric fields in another
database file. No check is made if the number of decimal positions is greater than
15. The procedure is placed in module M11A.

The second elementary procedure is NonDigit, which checks if a string contains a
valid number. The valid characters are digits and blanks. The procedure is placed
in module M11B.

The third procedure is EdtChrNbr, which edits a character coded number, as if it
had the requested decimal positions. This procedure uses both the elementary
procedures in sequence. The input to the procedure is a string of digit and blank
characters. If the string contains at least one invalid character (other than decimal
digit or blank), the result is all blanks. The procedure is placed in module M11.

All three modules have the NOMAIN keyword. They are used (called) by module
M10, which contains a main procedure and no subprocedures.

First, source codes of the four modules are presented starting with 4.2.2.1,
“Procedure DynEdit in module M11A” on page 73. Then, different ways are shown
how the modules can be combined in various service programs in the following
sections:

• 4.2.2.6, “Creating one service program” on page 79
• 4.2.2.7, “Creating two chained service programs” on page 80
• 4.2.2.8, “Creating three chained service programs” on page 80

The decision about grouping the modules into service programs (that is, how
many service programs to create from these modules) is made as part of the
application design. Service programs are simply collections of commonly used
modules of code. In that sense, the kind of logic that is used for deciding how
many AS/400 libraries you need and what kinds of objects are grouped together
by library is similar to the logic you will use here.

From a performance perspective, the groupings should be made based on how
likely it is that the modules will be referenced together by a group of programs in
the same job. Grouping multiple modules together into a single service program
requires fewer connections between a program and service program to
accomplish multiple tasks. Since making these connections takes time at
application run time, minimizing the number of connections necessary can have a
positive performance impact.
72 Who Knew You Could Do That with RPG IV?

On the other hand, you can go too far in that direction. For example, you would
not want to create only one extremely large service program for use by all
programs in your entire shop. This is because the memory required to activate
the large service program in every user's job (if all the users are not using all the
functions) may cause too much paging activity on the system. Likewise, the CPU
time required to initialize all the storage in the service program modules that are
not used by some users could cause a performance problem.

In addition to the performance impact of service program packaging, you should
consider the impact on maintaining the applications. The packaging should be set
up so that the programmers using the functions can easily find them to use and
maintain them. Some sort of logic in the groupings, such as grouping similar
functions together, is useful in this respect.

As you can see, the decisions about packaging modules into service programs is
a balancing act. You must try to balance the performance needs with ease of
development and maintenance. Performance needs also require a balance
between the desire to minimize the number of connections between any given
program and its required service programs. At the same time, you must minimize
the activation and initialization of modules in a service program that are not used
by a group of programs that a given user utilizes within a job.

The good news is that changing the service program packaging, if it turns out you
made the wrong decisions in the beginning, is a relatively easy task. If the module
objects still exist on the system, no re-compile of the source code is required to
change the packaging scheme.

For this particular example of the DynEdit, NonDigit, and EdtCharNbr procedures,
it is most likely that these modules would best be grouped together into a single
service program (as in the first example). This is because all three modules are
used together by at least one main module (M10). Grouping them reduces the
number of connections required between program and service programs. In
addition, all three procedures are similar in function. They all perform various
types of string handling functions, so there is also a logical reason to group them
together. As a matter of fact, you could even argue that it may have been a good
idea to group all three of these subprocedures into a single module because of
the close relationship they have to one another. However, for purposes of
illustrating the technical possibility of grouping them in different ways, we have
chosen to put the three functions into separate modules for this illustration.

How the service programs are bound to a program is explained in 4.2.3, “Binding
service programs to programs” on page 81.

4.2.2.1 Procedure DynEdit in module M11A
Module M11A is compiled from the following source:

* M11A from ILESRC in RPGISCOOL
*
* Contains one subprocedure - DynEdit

H Nomain
*==
* DynEdit - Dynamic edit with variable decimal positions on
* request
*==
An ILE guide for the RPG programmer 73

* Procedure prototypes

/Copy RPGISCOOL/ILESRC,CPYS11

* Procedure definition

P DynEdit B EXPORT

* Procedure interface

D DynEdit PI 100A Varying
D Number 15P 0 Value
D DecPos 3P 0 Value

* Local data definitions

D EdtNbr S 100A Varying
D WorkNbr S 30P15
D Correction S 1P 0
D Pos S 3P 0

* If requested decimal positions are 0 - the correction is -1
C If DecPos = 0
C Eval Correction = -1

* If requested decimal positions are > 0 - the correction is 0
C Else
C Eval Correction = 0
C EndIf

* Shift the (15 0) input number right by requested decimal places
* (if decimal places are positive or zero) and place it to
* (30 15) work variable. E.g. DecPos = 2:
* 1 1 2 3
* 1...5....0....5 1...5....0....5....0....5....0
* 111111111111111 ==> 001111111111111110000000000000

C Eval WorkNbr = Number * 10 ** -DecPos

* Edit the work number with edit code 3 and place the result
* in the varying length character variable:
* ' 1111111111111.110000000000000'

C Eval EdtNbr = %Editc(WorkNbr :'3')

* Extract the edited number without trailing digits:
* Text from position 1 to the end, minus 15,
* plus dec.positions,
* ' 1111111111111.11' plus correction

C Eval EdtNbr = %Subst(EdtNbr : 1 :
C %Len(EdtNbr) -15 +DecPos
C +Correction)

* Return the edited number as a varying character variable

C Return EdtNbr

P DynEdit E

4.2.2.2 Procedure NonDigit in module M11B
Module M11B is compiled from the following source:

* M11B from ILESRC in RPGISCOOL
*
* Contains one procedure - NonDigit

H Nomain

*==
* NonDigit - Checks if the input character variable contains
* a non-digit (or nonblank) character.
* If yes, returns error code *On and replaces
* the input variable with all zero characters.
74 Who Knew You Could Do That with RPG IV?

* If not, returns positive code *Off replaces
* all blanks by zeros.
*
*==

* Procedure prototypes

/Copy RPGISCOOL/ILESRC,CPYS11

* Procedure definition

P NonDigit B EXPORT

* Procedure interface
D NonDigit PI 1N
D String 100A Varying
D Position 3P 0

* Check if invalid character is found in the string
* (other than a digit or blank)

C ' 0123456789' Check String:1 Position

* If found replace the input string with all zero digits

C If %Found
C Eval String = *All'0'

* If all digits or blanks - Replace blanks by zeros

C Else
C ' ':'0' Xlate String String
C EndIf

* Return *On if invalid character found, *Off if not found

C Return %Found

P NonDigit E

Prototype CPYS11
These prototypes are used by the copy member in modules M11, M11A, and
M11B:

*
* CPYS11 from ILESRC in RPGISCOOL
*
* Prototypes for functions: DynEdit - Dynamic editing
* NonDigit - Check for non-digit
* characters in a string

* Prototype for function DynEdit - Dynamic editing

D DynEdit Pr 100A Varying
D Number 15P 0 Value
D DecPos 3P 0 Value

* Prototype for function NonDigit - Check for non-digit
* characters in a string

D NonDigit Pr 1N
D String 100A Varying
D Position 3P 0

4.2.2.3 Procedure EdtChrNbr in module M11
Module M11 is compiled from the following source:

* M11B from ILESRC in RPGISCOOL
*
* Contains one procedure - EdtChrNbr

An ILE guide for the RPG programmer 75

H Nomain

*==
* EdtChrNbr - Edit character coded number
*==

* Procedure prototypes

/Copy RPGISCOOL/ILESRC,CPYS10
/Copy RPGISCOOL/ILESRC,CPYS11

* Procedure definition

P EdtChrNbr B EXPORT

* Procedure interface
D EdtChrNbr PI 1N
D CharNbr 100A Varying
D DecPos 3P 0 Value
D EditedNbr 100A Varying

* Local data
D Pos S 3P 0
D Number S 15P 0

* Check if the characters contain all digits or blanks

C If NonDigit(CharNbr : Pos)

* If not all digits or blanks - Return *On (error)

C Return *On
C EndIf

* Else (all digits or blanks) - Convert characters to a number

C Move(P) CharNbr Number

* Edit the number with requested decimal positions (edit code 3)

C Eval EditedNbr = DynEdit(Number : DecPos)

* Return *Off (OK)

C Return *Off

P EdtChrNbr E

4.2.2.4 Program (main procedure) in module M10
Module M10 is compiled from the following source:

* M10 from ILESRC in RPGISCOOL
*
* Entering character coded numbers and edit them
* with requested decimal positions on the screen

H
*==
* File description - Display file
*==

FCHRNUMW CF E WorkStn

*==
* Data definitions
*==

D EditNbr S 100A Varying
D RC S 1N
D CharNbr S 100A Varying

* Called procedure prototypes

/Copy RPGISCOOL/ILESRC,CPYS10
76 Who Knew You Could Do That with RPG IV?

* Process display file

C DoW Not *InLR

* Show the first format to enter a character number
* and requested decimal positions to edit

C ExFmt CHRNUMWR
C If *In03
C Leave
C EndIf

* Edit the character coded number with requested decimal positions

C Eval CharNbr = CHRNBR
C Eval RC = EdtChrNbr(CharNbr: DecPos: EditNbr)

* If error - Supply all blanks

C If RC
C Eval EDTNBR = *Blanks
C Else

* Else (OK) - Trim trailing blanks and shift right

C EvalR EDTNBR = %TrimR(EditNbr)
C EndIf

* Show the result on the second screen format

C ExFmt CHRNUMWR2
C If *In03
C Leave
C EndIf

C EndDo

C Eval *InLR = *On

Prototype CPYS10
This prototype is used by the copy member in module M10 and M11:

*
* CPYS10 from ILESRC in RPGISCOOL
*
* Prototype for function EdtChrNbr - Edit character coded number
*

D EdtChrNbr Pr 1N
D CharNbr 100A Varying
D DecPos 3P 0 Value
D EditedNbr 100A Varying

4.2.2.5 Display file description CHRNUMW
The following display file description is used in the main procedure of module
M10:

**
* CHRNUMW from ILESRC in RPGISCOOL
*
* Edit character coded numbers
**
A DSPSIZ(24 80 *DS3)
A CA03(03 'End')

* Format to enter a character number and required decimal pos.
A R CHRNUMWR
A 5 4'Enter a number without special cha-
A racters:'
A DSPATR(HI)
A CHRNBR 15A B 6 5
A 8 4'Enter number of decimal positions -
An ILE guide for the RPG programmer 77

A you want to have in the edited numb-
A er:'
A DSPATR(HI)
A DECPOS 3 0B 9 5EDTCDE(4)

* Format to show resulting edited number
A R CHRNUMWR2
A 4 4'Character coded number:'
A CHRNBR 15A O 6 5
A 8 4'Required decimal positions:'
A DECPOS 3Y 0O 9 5EDTCDE(3)
A 12 4'Resulting edited number:'
A EDTNBR 16A O 13 5DSPATR(RI)
A 16 5'Press Enter.'

The following screens show how the 15-character coded number is edited into
another character field.

Format CHRNUMWR prompts the user to enter a number as shown in Figure 2.

Figure 2. Entering a character coded, nonedited number

Format CHRNUMWR2 in Figure 3 shows the result of editing along with the
entered values.

Figure 3. Result of editing a character coded number

Enter a number without special characters:
1111111111111

Enter number of decimal positions:
2

Character coded number:

1111111111111

Required decimal positions:
2

Resulting edited number:
11111111111.11

Press Enter.
78 Who Knew You Could Do That with RPG IV?

4.2.2.6 Creating one service program
We can bind all three procedures into one service program by using the
CRTSRVPGM command:

CRTSRVPGM SRVPGM(RPGISCOOL/S123) MODULE(RPGISCOOL/M11A RPGISCOOL/M11B
RPGISCOOL/M11) EXPORT(*ALL) ACTGRP(*CALLER)

Figure 4 illustrates how the service program is built.

Figure 4. Service program bound from three modules

We named our service program S123 and made all its exports available to
external callers. The EXPORT(*ALL) parameter specifies exactly this. Note that
exports are the names of procedures DynEdit, NonDigit, and EdtCharNbr, which
specify the EXPORT keyword. We shall see later that this option, although easy
to specify, hides in itself some disadvantages related to signatures. A signature is
a code that expresses a version of exports. It is similar to level check values used
with files.

The ACTGRP(*CALLER) parameter indicates that the service program will run in
the same activation group as its caller. The caller is the program to which our
service program is bound. Several different programs may bind the same service
program and call its procedures at the same time.

The following commands can be used to create the modules described above.
These compilations needs to be done before creating the service program
objects described in the upcoming sections:

CRTRPGMOD MODULE(RPGISCOOL/M11A) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*MODULE)
CRTRPGMOD MODULE(RPGISCOOL/M11B) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*MODULE)
CRTRPGMOD MODULE(RPGISCOOL/M11) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*MODULE)

Prior to creating the module M10, the display file CHRNUMW must have been
created by using the following command:

CRTDSPF FILE(RPGISCOOL/CHRNUMW) SRCFILE(RPGISCOOL/ILESRC)

ADDLIBLE LIB(RPGISCOOL)
CRTRPGMOD MODULE(RPGISCOOL/M10) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*MODULE)

Try it yourself

Service Program S123
Module M11A Module M11B Module M11
An ILE guide for the RPG programmer 79

4.2.2.7 Creating two chained service programs
We can create two separate service programs and bind them together. First,
service program S12 is created by binding modules M11A and M11B (DynEdit
and NonDigit procedures). Service program S3S12 is then created by binding
module M11 and the service program S12. The service program S12 is chained to
the service program S3S12. The corresponding commands are:

CRTSRVPGM SRVPGM(RPGISCOOL/S12) MODULE(RPGISCOOL/M11A RPGISCOOL/M11B)
EXPORT(*ALL) ACTGRP(*CALLER)

CRTSRVPGM SRVPGM(RPGISCOOL/S3S12) MODULE(RPGISCOOL/M11) EXPORT(*ALL)
BNDSRVPGM(RPGISCOOL/S12) ACTGRP(*CALLER)

Figure 5 illustrates how the service programs are built.

Figure 5. Two chained service programs

We named our two service programs S12 and S3S12 and let them “export all its
exports” by the EXPORT(*ALL) parameter.

The imports from the module M11 (procedures DynEdit and NonDigit) were
resolved in the example in 4.2.2.6, “Creating one service program” on page 79,
by specifying Bind Service Program (BNDSRVPGM) S12. A different possible
way to resolve them would have been to include modules M11A and M11B in the
same service program as in our previous example with service program S123.

4.2.2.8 Creating three chained service programs
Service program S3S1S2 is created if we bind module M11 with two service
programs, S1 and S2. The following commands show how to do it:

CRTSRVPGM SRVPGM(RPGISCOOL/S1) MODULE(RPGISCOOL/M11A) EXPORT(*ALL)

CRTSRVPGM SRVPGM(RPGISCOOL/S2) MODULE(RPGISCOOL/M11B) EXPORT(*ALL)

CRTSRVPGM SRVPGM(RPGISCOOL/S3S1S2) MODULE(RPGISCOOL/M11) EXPORT(*ALL)
BNDSRVPGM(RPGISCOOL/S1 RPGISCOOL/S2) ACTGRP(*CALLER)

Figure 6 illustrates how the service programs are built.

Service Program S3S12
Module M11

Service Program S12
Module M11A Module M11B
80 Who Knew You Could Do That with RPG IV?

Figure 6. Three chained service programs

Note that a service program always binds at least one module and an arbitrary
number of service programs.

4.2.3 Binding service programs to programs
Now that we have several arrangements of service programs, we can create
several programs, each binding a different set of service programs but still each
performing the same function. Only three combinations are shown.

Recall that programs are objects of *PGM type and can be run. Modules are
objects of *MODULE type and cannot be run. Service programs are objects of
*SRVPGM type and cannot be run without a program.

4.2.3.1 Program from one module and one service program
Program PS123 is created by binding module M10 (main procedure) by copy and
the service program S123 (by reference). Figure 7 on page 82 illustrates how the
program is built.

Service Program S3S1S2
Module M11

Service Program S2
Module M11B

Service Program S1
Module M11A
An ILE guide for the RPG programmer 81

Figure 7. Program consisting of one module and one service program

4.2.3.2 Program from one module and a chained service program
Program PS3S12 is created by binding module M10 and the chained service
program S3S12. Figure 8 illustrates how the program is built.

Figure 8. Program consisting of one module and two chained service programs

Program PS123
Module M10

Service Program S123
Module M11A Module M11B Module M11

Use the following command to create the program object using the service
program created in 4.2.2.6, “Creating one service program” on page 79:

CRTPGM PGM(RPGISCOOL/PS123) MODULE(RPGISCOOL/M10) ENTMOD(*FIRST)
BNDSRVPGM(S123) ACTGRP(QILE)

Run program PS123 using the following commands:

ADDLIBLE LIB(RPGISCOOL)
CALL PGM(RPGISCOOL/PS123)

Try it yourself

Program PS3S12
Module M10

Service Program S12
Module M11A Module M11B

Service Program S3S12
Module M11

Use the following command to create the program object using the service
programs created in 4.2.2.7, “Creating two chained service programs” on page
80:

CRTPGM PGM(RPGISCOOL/PS3S12) MODULE(RPGISCOOL/M10) ENTMOD(*FIRST)
BNDSRVPGM(RPGISCOOL/S3S12) ACTGRP(QILE)

Run program PS312 by using the following commands:

ADDLIBLE LIB(RPGISCOOL)
CALL PGM(RPGISCOOL/PS3S12)

Try it yourself
82 Who Knew You Could Do That with RPG IV?

4.2.3.3 Program from two modules and two service programs
Program PM11S1S2 is created by binding modules M10 and M11 (by copy) and
service programs S1 and S2 in parallel (by reference). Figure 9 illustrates how
the program is built.

Figure 9. Program consisting of two modules and two service programs

Note that a program always binds at least one module. It does not need to bind
any service program at all, or it may bind several service programs.

4.2.4 Service programs, binder language, and signatures
When we created a service program, we used the EXPORT(*ALL) parameter in
CRTSRVPGM command. This allows all exports of all modules in the service
program to be used by other applications.

All public exports form a base for the signature, which is a value that is derived by
the binder as a unique characteristic of the service program.

The signature of a service program has a similar function as the level check value
used in files. Whenever a service program is activated by the program, a check is
made if the signature matches the one that is stored in the program since the last
binding. If not, an error message occurs. To correct this error situation, the
developer needs to rebind the service program to all programs that reference it.

Program PM11S1S2
Module M10

Service Program S2
Module M11B

Service Program S1
Module M11A

Module M11

Use the following command to create the program object using the service
programs created in 4.2.2.8, “Creating three chained service programs” on
page 80:

CRTPGM PGM(RPGISCOOL/PM11S1S2) MODULE(RPGISCOOL/M10 RPGISCOOL/M11)
ENTMOD(*FIRST) BNDSRVPGM(RPGISCOOL/S1 RPGISCOOL/S2) ACTGRP(QILE)

Run program PM11S1S2 by using the following commands:

ADDLIBLE LIB(RPGISCOOL)
CALL PGM(RPGISCOOL/PM11S1S2)

Try it yourself
An ILE guide for the RPG programmer 83

Note that this is only a rebind requirement and not a recompile requirement. The
easiest and most common way to accomplish this rebind is by using the
UPDPGM command and specifying the service program that has changed. This
way, you do not need to have all the modules in the correct version to create the
program again using the original CRTPGM command.

Another method to use is the parameter EXPORT(*SRCFILE) along with two
other parameters designating a source member containing binder language
source. The Source Entry Utility (SEU) type for the binder language source
member is BND and its default source file is QSRVSRC. The specifications in this
binder language source are collectively called binder language.

Some customers prefer maintaining binder language to manage the service
program signatures to rebinding all the programs that use a service program. This
is especially true in cases where the only change made to the service program
was to add one or two new procedures. If you have only a single AS/400 system
running your application, you may find that rebinding using the UPDPGM
command is simpler than creating and maintaining the binder language source. In
fact, many ILE programmers go through their entire careers without every using
binder language. However, if you have many production systems, particularly if
they are in remote locations, you may find that maintaining binder language
makes it easier to make relatively small, incremental changes to your service
program structures. If there was a need to rebind all the programs using the
changed service program, you would need to either perform that rebind on all the
remote systems. Or, you would need to rebind on your system and ship to the
remote locations all the updated program objects in addition to the changes
service program objects.

In addition, by using the binder source, you can control which procedures from
the service program you actually want to make available to calling programs by
controlling which ones you export. This gives you the flexibility to "hide" some of
the procedures in the service program so that they are callable only from other
procedures inside the same service program. Then, they will not be callable by
program modules or other service program modules.

4.2.4.1 Binder language
Binder language consists of three statements and comments. Comments look
much the same as those in CL language. The statements are:

STRPGMEXP Starts a block of export symbols and has three parameters.

EXPORT Specifies an external (export) symbol, for example, a
subprocedure or variable name.

ENDPGMEXP Ends the block of export symbols.

A short example shows two blocks of export symbols:

/* Current version of exports */
STRPGMEXP PGMLVL(*CURRENT) LVLCHK(*YES) SIGNATURE(*GEN)
EXPORT SYMBOL(s1) /* translates to S1 */
EXPORT SYMBOL('s2') /* remains as s2 */
EXPORT SYMBOL("s3") /* remains as s3 */
ENDPGMEXP

/* Previous version of exports */
STRPGMEXP PGMLVL(*PRV)
84 Who Knew You Could Do That with RPG IV?

EXPORT SYMBOL(s1)
EXPORT SYMBOL('s2')
ENDPGMEXP

In the first block, default values for the parameters in the STRPGMEXP statement
are shown. If you do not specify any parameters, these are assumed.

4.2.4.2 Parameters of the STRPGMEXP statement
Parameter PGMLVL can have the following values:

*CURRENT The currently valid block of export symbols. Only one block of this
type is allowed and should be the first block of all.

*PRV The block represents a previous version of the export symbols.
There can be more than one previous block.

Parameter LVLCHK can have the following values:

*YES The signature is checked by the system at activation time.

*NO The signature is not checked. We recommend that you do not use
this option because it can cause unpredictable results. Other
options, such as specifying a signature value, allow for the
necessary flexibility.

Parameter SIGNATURE can have the following values:

*GEN The signature code is generated by the binder.

value The signature code is supplied by the programmer as a 16-byte
character value expressed in text or hexadecimal notation. We
discuss this option in 4.2.4.5, “Using your own signatures” on page
87.

4.2.4.3 Parameters of the EXPORT statement
The EXPORT statement has only the SYMBOL parameter, which specifies a
procedure name or a variable name that is to be exported from the service
program. The name is sometimes called "export symbol" or "external symbol".
The name can be written in capital and small letters without apostrophes or
quotation marks. In this case, the name is converted into capital letters. If lower
case letters or special characters are needed in exported symbols, apostrophes
or quotes need to be used.

If a new export symbol is to be added to the list of exports, the current block can
be expanded by adding the new export symbol after the last existing EXPORT
statement.

4.2.4.4 Using blocks of exported symbols
For example, our service program S12 could and should use the following binder
source specified in member S12 of the QSRVSRC source file in library
RPGISCOOL:

STRPGMEXP
EXPORT SYMBOL(DynEdit)
EXPORT SYMBOL(NonDigit)
ENDPGMEXP
An ILE guide for the RPG programmer 85

This is the simplest form of the binder language source. The source member is
usually named the same as the service program it belongs to as in our example
S12.

The binder language source is used in the CRTSRVPGM command as follows:

CRTSRVPGM SRVPGM(RPGISCOOL/S12) MODULE(RPGISCOOL/M11) EXPORT(*SRCFILE)
SRCFILE(RPGISCOOL/QSRVSRC) SRCMBR(*SRVPGM) ACTGRP(*CALLER)

The EXPORT, SRCFILE, and SRCMBR parameters are needed to specify the
binder language source. The *SRVPGM value in the SRCMBR parameter tells
the binder that the source member has the same name as the resulting service
program. You can specify your own name instead. However, using the service
program name is good practice.

The Retrieve Binder Source (RTVBNDSRC) command can be used to help
generate the binder language source based on exports from one or more
modules. For example, the command:

RTVBNDSRC MODULE(RPGISCOOL/M11A RPGISCOOL/M11B) SRCFILE(RPGISCOOL/ILESRC)
SRCMBR(S12)

generates the following source text in member S12 of the ILESRC file:

STRPGMEXP PGMLVL(*CURRENT)
/**/
/* *MODULE M11A RPGISCOOL 06/17/99 16:28:40 */
/**/
EXPORT SYMBOL("DYNEDIT")

/**/
/* *MODULE M11B RPGISCOOL 06/17/99 16:28:40 */
/**/
EXPORT SYMBOL("NONDIGIT")

ENDPGMEXP

Each block of export symbols defined by the EXPORT statements between
STRPGMEXP and ENDPGMEXP represents a separate signature. The sequence
in which the symbols are ordered is significant for the signature (if it is generated
by the binder). Each change in the sequence causes a change in the signature.

The block of currently valid exports is specified by the PGMLVL(*CURRENT)
parameter of the STRPGMEXP statement. One or more blocks of previously valid
exports may be specified below with PGMLVL(*PRV) parameter.

The binder stores all signatures in the service program so that they are available
when a program is bound and later called. The current signature is stored in the
program when it is created (bound) by the binder (for example, by the CRTPGM
command).

At program activation time, the system checks if the signature stored in the
program matches one of those in the service program. If at least one signature
matches, the program can run. If there is no matching signature, a level check
error is reported (if not disabled by LVLCHK(*NO) in the binder language source).
This way, the system ensures that the correct version of the service program is
used with the program. This is similar to level checking with files.

The “previous” signatures may help you to run new versions of service programs
with old versions of a program without rebinding. The service program
86 Who Knew You Could Do That with RPG IV?

“remembers” the previous signatures. This allows a program that has stored the
old (current when the program was compiled) service program signature to use
the newly re-compiled service program.

4.2.4.5 Using your own signatures
There are occasional circumstances where you may find it helpful or necessary to
hard code your own signature values using binder language. When doing this, be
careful to ensure that the sequence of the previously used exports remains
exactly the same as it was when any programs were bound to it. Any change in
the sequence of exports or any removal of exports from earlier versions of this
service program will cause seriously negative effects when programs connect to
the recreated service program. It is quite possible that if the list of exports is not
maintained correctly, an incorrect procedure could be called and run by mistake.
If the system generates your signatures for you (the Signature *GEN option), it
will create signatures based on the list in the binder language. It is certainly
possible for you to write the binder language incorrectly so that they are specified
in the wrong sequence. Likewise, it is even more possible that exports could get
into the wrong sequence if you do not specify them in the binder language at all.

You may want to consider explicitly specifying a signature for special
circumstances. For example, you may want to intentionally force an incompatible
signature for a service program because you made significant changes to a
particular procedure's function and need to ensure that all programs that use that
service program are reviewed and updated as necessary to use the new function
appropriately. Forcing a change to the service program's signature ensures that
any programs that were not updated would get an error when called. This is
preferable to using the function in the service program incorrectly.

Your signature specification may appear as wither possibility shown here:

STRPGMEXP PGMLVL(*CURRENT) SIGNATURE(’AnIncompatibleSi’)
STRPGMEXP PGMLVL(*CURRENT) SIGNATURE(X’0000000000000000F105631521336215’)

You can determine the signature values in a service program by the command:

DSPSRVPGM SRVPGM(RPGISCOOL/S12) OUTPUT(*PRINT) DETAIL(*SIGNATURE)

The printout looks like this:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+.
Display Service Program Information

5769SS1 V4R4M0 990521
Service program : S12
Library : RPGISCOOL

Owner : VZUPKA
Service program attribute : RPGLE
Detail : *SIGNATURE

Signatures:
0000000000000000F105631521336215

For more information about signatures, refer to AS/400 ILE Concepts,
SC41-5606.

4.2.5 Using binding directories
Binding directories are created by two CL commands: Create Binding Directory
(CRTBNDDIR) and Add Binding Directory Entry (ADDBNDDIRE) (or Work with
Binding Directory Entries (WRKBNDDIRE)). The first command creates an object
of *BNDDIR type. The second command adds a new entry to the directory list.
An ILE guide for the RPG programmer 87

Each entry contains an object name. The objects are modules or service
programs.

We create our program with the name PM11S1S2 using binding directory
BM11S1S2. The binding directory BM11S1S2 is created by the following
commands:

CRTBNDDIR BNDDIR(RPGISCOOL/BM11S1S2)
ADDBNDDIRE BNDDIR(RPGISCOOL/BM11S1S2) OBJ((RPGISCOOL/M11 *MODULE))
ADDBNDDIRE BNDDIR(RPGISCOOL/BM11S1S2) OBJ((RPGISCOOL/S1 *SRVPGM))
ADDBNDDIRE BNDDIR(RPGISCOOL/BM11S1S2) OBJ((RPGISCOOL/S2 *SRVPGM))

We can display contents of a binding directory by the DSPBNDDIR (or
WRKBNDDIRE) command:

DSPBNDDIR BNDDIR(RPGISCOOL/BM11S1S2) OUTPUT(*PRINT)

The printout looks like this:

*...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
Display Binding Directory

5769SS1 V4R4M0 990521
Binding Directory : BM11S1S2 Libra

--------Creation---------
Object Type Library Date Time
M11 *MODULE *LIBL 06/08/99 10:10:43
S1 *SRVPGM *LIBL 06/11/99 09:07:42
S2 *SRVPGM *LIBL 06/11/99 09:07:49

Now, we can create our program by the binder command:

CRTPGM PGM(RPGISCOOL/PM11S1S2) MODULE(RPGISCOOL/M10)
BNDDIR(RPGISCOOL/BM11S1S2) ACTGRP(QILE)

This creates the same binding as the earlier example in 4.2.3.3, “Program from
two modules and two service programs” on page 83. The program still performs
the same function as our previous programs.

Binding directories are used in the operating system to bind system procedures
to compiled modules. The names of system procedures are generated by the
compiler as unresolved imports (references). For example, you may display your
module contents by the command:

DSPMOD MODULE(RPGISCOOL/M11B) DETAIL(*IMPORT)

Then, you would get the following system procedure names:

_QRNX_SUBP_EXCP
_QRNX_INIT_H
_QRNX_INIT
_QRNX_SIGNAL_EXCP
Q LE leDefaultEh

If you work with functions that are defined for the C language, you specify the
system binding directory QC2LE in your CRTRPGMOD or CRTBNDRPG
command. You can specify it on the H specification in your source program as
the keyword BNDDIR(’QC2LE’). This binding directory lists service program
names that export the function names.

Binding Directory QC2LE
88 Who Knew You Could Do That with RPG IV?

These unresolved imports are later resolved through system binding directories.
The binder can find them in the service program QRNXIE listed in the binding
directory QRNXLE in the QSYS library.

We can combine modules and service programs in many variations to produce a
program. The specific combination you choose depends on your preferences or
your software project conventions.

4.2.6 Activation groups
Activation groups enable programs to run in isolated environments. Every ILE
program and service program contains information about the activation group in
which it runs. The CRTPGM and CRTSRVPGM binder commands have a
parameter ACTGRP, which specifies the activation group. Also the Create Bound
RPG Program (CRTBNDRPG) command accepts the ACTGRP parameter if you
specify DFTACTGRP(*NO).

4.2.6.1 Defining and creating activation groups
The Create Program (CRTPGM) and Create Bound RPG Program
(CRTBNDRPG) commands allow the following values for the ACTGRP
parameter:

*NEW A new activation group is created every time the program is called.
This is a default value for CRTPGM command. Accepting this default
for all ILE programs will result in serious performance problems. The
*NEW option allows recursive calling of RPG IV programs because a
new set of static variables and open data paths are created each time
the program is called. However, creation of a new activation group is a
resource and time consuming process. You should use this option only
if you actually need it.

name A named activation group is created if the program is called and the
activation group does not yet exist. This is a default value for the
CRTBNDRPG command, using the name QILE. This is the most
preferable option if there’s only one program per application and
everything else is a service program as it enables separation of
applications in a most efficient way. When there are multiple programs
in an application, it should be used on the main program that is calling
all the others. In this case, all the other programs should use
*CALLER or exactly the same name.

*CALLER No new activation group is created. The program runs in the existing
activation group from which the program was called. It is the ideal
solution when an application is made of multiple programs and the
main one as been invoked in a NAMED activation group.

The Create Service Program (CRTSRVPGM) command allows the same
parameter values except *NEW:

name A named activation group is created if the service program’s
procedure is called and the activation group does not already exist.

*CALLER No new activation group is created. The service program’s procedures
run in the activation group from which they were called. This is the
default value. This is the most preferred solution if they are called from
different programs at the same time. Then, they have separate
resources for each individual call.
An ILE guide for the RPG programmer 89

4.2.6.2 Ending subprocedures, programs, and activation groups
It is important to know how subprocedures, programs (main procedures), and
activation groups can be ended or deleted:

• A subprocedure is ended by the RETURN operation or by reaching its last
statement. Then all local (automatic) variables are removed from the stack
except the static variables (those with the STATIC keyword) that are retained.

• A program (main procedure) is ended by:

– Issuing the RETURN operation without turning on the LR indicator. In this
case, all files remain open (open data paths are still available) and static
variables remain untouched.

– Setting the LR indicator on and then returning. In this case, the files are
closed (open data paths are deleted), and static variables remain allocated
but are marked for future initialization. If the main procedure is called later
again, the static storage is initialized without a new allocation.

• An activation group is ended (deleted) according to its type:

– A *NEW activation group is completely deleted when the program ends
abnormally or when it returns to its caller (even without the LR indicator
turned on). This is important when calling a program recursively and also
when you test a new program. You do not need to sign off or use an
RCLACTGRP command to end the activation group as you would have to
with a named activation group.

– A named activation group exists during all the life of the active job. It is
ended along with the job end. To end a named activation group while the
job is still running, you can use the Reclaim Activation Group
(RCLACTGRP) command or a bound call to the ILE API program
CEETREC. The CEETREC call has no required parameters. While the
CEETREC call ends the current activation group immediately, the
RCLACTGRP command may specify an activation group name or
*ELIGIBLE. The eligible activation groups are those where no programs or
procedures are currently in the call stack for the job. Only activation groups
that are not in use can be deleted with this command. A named activation
group is deleted automatically if the only program active in it ends
abnormally.

– Default activation group is never ended before the job ends.

4.2.6.3 Overriding files in activation groups
If you want to change some characteristics of a file (database, printer, display,
etc.), you can use an OVRxxxF command, where xxx stands in place of DB for
database or PRT for printer, etc. For example, you can use the Override with
Data Base File (OVRDBF) command to override the SHARE parameter of a
database file, or the Override with Printer File (OVRPRTF) command to override
the form length or the printer device name.

The override commands have, among others, two parameters that specify a
scope (boundaries) of their influence. The OVRSCOPE parameter tells the
system where in the call stack the override will be valid, before the file is open.
The OPNSCOPE parameter specifies where in the call stack the first (full) open
operation on the file will be valid for subsequent (shared) open operations on the
same file.
90 Who Knew You Could Do That with RPG IV?

The OVRSCOPE parameter can specify the following values:

*ACTGRPDFN
The scope of the override is determined by the activation group of the
program that issues this command. When the activation group is the
default activation group, the scope equals the call level of the calling
program. When the activation group is not the default activation group,
the scope equals the whole activation group of the calling program.

*CALLLVL
The scope of the override is determined by the current call level. All
open operations done at a call level that is the same as or lower
(numerically higher) than the current call level are influenced by this
override.

*JOB The scope of the override is the job in which the override occurs.

The OPNSCOPE parameter can specify the following values:

*ACTGRPDFN
The scope of the open operation is determined by the activation group of
the program that called the OVRxxxF command processing program. If
the activation group is the default activation group, the scope is the call
level of the caller. If the activation group is a non-default activation
group, the scope is the activation group of the caller.

*JOB The scope of the open operation is the job in which the open operation
occurs.

The (Open Data Base File) OPNDBF command has the OPNSCOPE parameter,
which can have similar values, so you can specify it at open time instead of
overriding in advance:

*ACTGRPDFN
The scope of the open operation is determined by the activation group of
the program that called the OPNDBF command processing program. If
the activation group is the default activation group, the scope is the call
level of the caller. If the activation group is a non-default activation
group, the scope is the activation group of the caller.

*ACTGRP
The scope of the open data path (ODP) is the activation group. Only
those shared opens from the same activation group can share this ODP.
This ODP is not reclaimed until the activation group is deactivated, or
until the Close File (CLOF) command closes the activation group.

*JOB The scope of the open operation is the job in which the open operation
occurs.

4.2.6.4 Sharing an open data path
An open data path (ODP) is the path through which all input and output
operations for a file are performed. Usually a separate open data path is defined
each time a file is opened. If you specify SHARE(*YES) for the file permanently or
temporarily, the first program's open data path for the file is shared by
subsequent programs that open the same file. You specify SHARE(*YES)
permanently with the CRTxxxF or CHGxxxF command. Temporary specification
is done by using the OVRxxxF (override) command.
An ILE guide for the RPG programmer 91

The point is that for a given shared ODP, a single file cursor (record pointer)
exists. Therefore, file operations in separate programs that use that shared ODP
will affect each other.

Let’s say a program positions to a specific record (for example, with SETLL) in a
file with a shared ODP and calls a second program, which performs an I/O
operation (for example, READ, CHAIN, or SETLL). The first program will no
longer be positioned at that record. It will be positioned to whatever record the
second program selected. For example, if the first program reads record 6, it can
expect that the next sequential read will return record 7. However, if a second
program sharing the ODP is called and it chains to record 11, the first program
will read record 12.

If a program holds a record lock in a file with a shared ODP and then calls a
second program which performs an I/O operation (for example, READ, READ
with no lock, UPDATE, DELETE, or UNLOCK) on the same file, the first program
will no longer retain the record lock.

For ILE programs running in non-default activation groups, shared files are
scoped to either the job level or the activation group level. Shared files that are
scoped to the job level can be shared by any programs running in any activation
group within the job. Shared files that are scoped to the activation group level can
be shared only by the programs running in the same activation group.

For programs running in non-default activation groups, the default scope for
shared files is the activation group. For job-level scope, specify OPNSCOPE(*JOB) on
the override command (often the OVRDBF command).

The RPG IV language offers several enhancements in the area of shared open
data paths. If a program or procedure performs a read operation, another
program or procedure can update the record as long as SHARE(*YES) is
specified for the file in question. In addition, when using multiple-device files, if
one program acquires a device, any other program sharing the ODP can also use
the acquired device. It is up to the programmer to ensure that all data required to
perform the update is available to the called program.

Sharing an open data path improves performance because the system does not
have to create a new open data path. However, sharing an open data path can
cause problems. For example, an error is signaled in the following cases:

• If a program sharing an open data path attempts file operations other than
those specified by the first open (for example, attempting input operations
although the first open specified only output operations)

• If a program sharing an open data path for an externally described file tries to
use a record format that the first program ignored

• If a program sharing an open data path for a program described file specifies a
record length that exceeds the length established by the first open

4.2.6.5 Shared open data path in a common activation group
Although shared open data paths save processing time for open operations, they
can sometimes lead to unwanted results as the example in Figure 10 shows.
92 Who Knew You Could Do That with RPG IV?

Figure 10. Shared open data path in a common activation group

The following series of events occurs:

1. Program P1 opens file F (creates the open data path) and reads all records
sequentially. The current record position is at the end of file (EOF).

2. Program P1 calls the program P2.

3. Program P2 opens file F using the same ODP with the current record position
at the end of file (EOF).

4. Program P2 tries to read a record but none is available.

Of course, if the program P2 issued a SETLL operation immediately after opening
the file, it would look better. If the program P2 comes from a different vendor than
program P1, it could be difficult to achieve.

This situation is more specifically presented in the following examples. Programs
P1 and P2 print the contents of the ITEMS database file, which specifies
SHARE(*YES) permanently. In addition, program P2 updates the file by
increasing the unit price by one percent. Both programs open the file for update
because they share the same file. If program P1 specified only input, an error
would occur at opening the file in program P2.

Program P1
Program P1 is compiled from the following source:

* P1 from ILESRC in RPGISCOOL
*
* Sequential processing of a file

Activation Group AG1
Program P1

OPEN F
READ F
. . .
READ F
CALL P2

Program P2

OPEN F
READ F

Shared
ODP

EOF

SHARE(*YES)

File F
An ILE guide for the RPG programmer 93

H DFTACTGRP(*NO) ACTGRP('AG1') 1

* File descriptions

FITEMS UF E Disk
FREPORT O E Printer

* Main procedure

C Read(N) ITEMS

C If %EoF 2
C Eval EOFTEXT = 'P1 End of file'
C Else
C Eval EOFTEXT = 'P1 Beginning of file'
C EndIf
C Write EOFLINE

C DoW Not %EoF 3
C Write ITEMDETAIL
C Read(N) ITEMS
C EndDo

C Call 'P2' 4

C Eval *InLR = *On
C Return

Note the following points:

1 Program P1 runs in activation group AG1. It is created by the CRTBNDRPG
command.

2 After the first READ operation, the program tests if the current record position
is EOF and, according to the test result, prints a line with appropriate text.

3 If the position is not at EOF, the program reads all database file records and
prints them.

4 After it reads all records, the program calls the other program, P2.

Program P2
Program P2 is compiled from the following source:

* P2 from ILESRC in RPGISCOOL
*
* Sequential processing of a file

H DFTACTGRP(*NO) ACTGRP('AG1') 1

* File descriptions

FITEMS UF E Disk
FREPORT O E Printer

* Main procedure

C Read ITEMS

C If %EoF 2
C Eval EOFTEXT = 'P2 End of file'
C Else
C Eval EOFTEXT = 'P2 Beginning of file'
C EndIf
C Write EOFLINE

C DoW Not %EoF 3

C Eval UNITPR = UNITPR * 1,01
C Update ITEMSR

C Write ITEMDETAIL
94 Who Knew You Could Do That with RPG IV?

C Read ITEMS
C EndDo

C Eval *InLR = *On
C Return

Note the following explanations:

1 Program P2 runs in the same activation group, AG1, as program P1.

2 Now, the current record position is still at EOF because the database file is
shared. Note that it is true, even if program P1 ended with LR indicator *ON.
The program prints an End of file message.

3 The reading cycle is therefore skipped, and program P2 ends and returns to
the program P1 which also ends.

You can recognize that the programs must be compiled by the CRTBNDRPG
command (option 14 in PDM) because they specify keywords DFTACTGRP and
ACTGRP in the H spec. These keywords are not allowed in the CRTRPGMOD
command (option 15 in PDM) because the ACTGRP parameter must be specified
only when creating a *PGM object. If using a CRTRPGMOD command, the
activation group would be specified on the subsequent CRTPGM command.

File ITEMS
This example uses a physical file member with the following definition:

* ITEMS from ILESRC in RPGISCOOL
*
* Item master file

A UNIQUE
A R ITEMSR
* Item number
A ITEMNBR 5 COLHDG('Item' 'number')
* Unit price
A UNITPR 9 2 COLHDG('Unit' 'price')
* Item description
A ITEMDESC 50 COLHDG('Item description')

* Key field
A K ITEMNBR

Here is the content of the sample physical file used in our examples:

Item Unit Item description
number price
00001 26.78 First item
00002 53.59 Second item
00003 80.38 Third item

Printer file REPORT
This printer file definition is used in our sample programs:

* REPORT from ILESRC in RPGISCOOL
*
* List of items

A REF(ITEMS)

A R ITEMDETAIL SPACEA(1)
A ITEMNBR R 2
A UNITPR R +2 EDTCDE(Q)
A ITEMDESC R +2

A R EOFLINE SPACEA(1)
A EOFTEXT 50 2
An ILE guide for the RPG programmer 95

After running the example by calling program P1 from the command line, we get
the following printout from program P1:

P1 Beginning of file
00001 25.00 First item
00002 50.00 Second item
00003 75.00 Third item

We also get the following printout from program P2:

P2 End of file

The activation group AG1 remains active because it is a named activation group.

Instead of specifying SHARE(*YES) on the ITEMS file permanently, you could
call the program P1 from a CL program. It specifies the override for
SHARE(*YES) and is compiled as an OPM CL program of source type CLP by
the Create CL Program (CRTCLPGM) command. The CL program contains the
following commands:

OVRDBF FILE(ITEMS) OVRSCOPE(*ACTGRPDFN) SHARE(*YES) OPNSCOPE(*ACTGRPDFN)
CALL PGM(RPGISCOOL/P1)

The OVRDBF command is issued when the CL program is called in the default
activation group. In this case, *ACTGRPDFN is the same as *CALLLVL. It means
that the open data path will be shared between programs P1 and P2, and the
results will be the same as before.

If we change the source type to CLLE (ILE CL), we can compile the same CL
program with the Create Bound CL Program (CRTBNDCL) command. We specify
the activation group ACTGRP(AG1) for the CL program. In this case, the
OVRDBF command causes the parameter SHARE(*YES) to be valid for open
operations inside the activation group AG1 only. The results are again the same
because programs P1 and P2 are running in the same activation group AG1.

4.2.6.6 Open data paths in different activation groups
If the programs run in different activation groups, each program creates and uses
its own open data path. The paths cannot be shared across activation group
boundaries when the SHARE(*YES) parameter is specified. The situation is
illustrated in Figure 11. Note that if another program using the ITEMS file were to

Create the programs P1 and P2 by using the following commands. Prior to
creating the programs, the physical file and printer file must be created:

ADDLIBLE RPGISCOOL
CRTPF FILE(RPGISCOOL/ITEMS) SRCFILE(RPGISCOOL/ILESRC)
CRTPRTF FILE(RPGISCOOL/REPORTS) SRCFILE(RPGISCOOL/ILESRC)

CRTBNDRPG PGM(RPGISCOOL/P1) SRCFILE(RPGISCOOL/ILESRC)
CRTBNDRPG PGM(RPGISCOOL/P2) SRCFILE(RPGISCOOL/ILESRC)

To run the program, use the following command:

CALL PGM(RPGISCOOL/P1)

Try it yourself
96 Who Knew You Could Do That with RPG IV?

be called in activation group AG1, it could share the ODP created by program
P1A.

Figure 11. Open data paths in different activation groups

Note these points:

• Program P1A runs in activation group AG1 and ends its processing at EOF.
This was the same for program P1 from the preceding example.

• Program P2A runs in activation group AG2. It opens its own data path and
reads records from the beginning of the file, no matter where the program P1A
stopped reading.

This situation is more specifically presented in the following examples. Program
P1A and P2A perform the same function as programs P1 and P2.

Program P1A
Program P1A is identical to program P1, except that it calls program P2A and
prints slightly different text:

* P1A from ILESRC in RPGISCOOL
*
* Sequential processing of a file

H DFTACTGRP(*NO) ACTGRP('AG1')

* File descriptions

FITEMS IF E Disk
FREPORT O E Printer

* Main procedure

Activation Group AG1
Program P1A

OPEN F
READ F
. . .
READ F
CALL P2A

Program P2A

OPEN F
READ F

SHARE(*YES)

File FActivation Group AG2
An ILE guide for the RPG programmer 97

C Read ITEMS

C If %EoF
C Eval EOFTEXT = 'P1A End of file'
C Else
C Eval EOFTEXT = 'P1A Beginning of file'
C EndIf
C Write EOFLINE

C DoW Not %EoF
C Write ITEMDETAIL
C Read ITEMS
C EndDo

C Call 'P2A'

C Eval *InLR = *On
C Return

Program P2A
Program P2A is identical to P2, except it specifies activation group AG2 in its H
specification and prints slightly different text:

* P2A from ILESRC in RPGISCOOL
*
* Sequential processing of a file

H DFTACTGRP(*NO) ACTGRP('AG2')

* File descriptions

FITEMS UF E Disk
FREPORT O E Printer

* Main procedure

C Read ITEMS

C If %EoF
C Eval EOFTEXT = 'P2A End of file'
C Else
C Eval EOFTEXT = 'P2A Beginning of file'
C EndIf
C Write EOFLINE

C DoW Not %EoF

C Eval UNITPR = UNITPR * 1,01
C Update ITEMSR

C Write ITEMDETAIL

C Read ITEMS
C EndDo

C Eval *InLR = *On
C Return

After running the example by calling program P1A from the command line, we get
the following printout from program P1A:

P1A Beginning of file
00001 25.00 First item
00002 50.00 Second item
00003 75.00 Third item
98 Who Knew You Could Do That with RPG IV?

We also get the following printout from program P2A:

P2A Beginning of file
00001 25.25 First item
00002 50.50 Second item
00003 75.75 Third item

Program P2A opened its own data path in a newly created activation group AG2
no matter if program P1A already has its ODP. Even though the file specifies
SHARE(*YES) permanently, no sharing occurs between activation groups AG1
and AG2 because the first open was performed in the activation group AG1.
Therefore, all records are printed in both programs, with the unit price increased
by 1% in program P2A. The activation groups AG1 and AG2 remain active
because they are named activation groups.

Using OVRSCOPE(*CALLVL) does not cause the ODP to be shared.

If you really want to share the ODP in both activation groups, you would have to
issue the following commands, the open scope being the entire job:

OVRDBF FILE(ITEMS) OVRSCOPE(*JOB) SHARE(*YES) OPNSCOPE(*JOB)
CALL PGM(P1A)

The OVRSCOPE parameter says that sharing the ITEMS file will last for the
entire time the job is active (unless another override comes in between). The
OPNSCOPE says that subsequent opens of the ITEMS file after the first open will
follow the attributes set by this command. The attributes are, among others, open
options for all types of access (input, output, update, delete) and, of course, the
share option set by the override command just before.

4.2.7 Call stack and error handling
The program stack known from OPM has been renamed to “call stack” because
not only programs but also subprocedures are contained in it.

4.2.7.1 Call stack and control boundaries
Certain entries in the call stack are known as control boundaries. An entry is a
control boundary if it was created by calling an OPM program or a procedure
(program or subprocedure) from a different activation group from the one before
it. Often, a main procedure represents a control boundary, especially if called

You can create the programs P1A and P2A using the following commands.
Prior to creating the programs, the physical file and printer file must be created
(if they weren’t created in the previous section):

ADDLIBLE RPGISCOOL
CRTPF FILE(RPGISCOOL/ITEMS) SRCFILE(RPGISCOOL/ILESRC)
CRTPRTF FILE(RPGISCOOL/REPORTS) SRCFILE(RPGISCOOL/ILESRC)

CRTBNDRPG PGM(RPGISCOOL/P1A) SRCFILE(RPGISCOOL/ILESRC)
CRTBNDRPG PGM(RPGISCOOL/P2A) SRCFILE(RPGISCOOL/ILESRC)

To run the program, use the following command:

CALL PGM(RPGISCOOL/P1A)

Try it yourself
An ILE guide for the RPG programmer 99

dynamically, that is, by the CALL statement from an ILE procedure or an OPM
program.

The main procedure of an ILE program has a special name in the call stack:

_QRNP_PEP_programname

Program entry procedure (PEP) represents the main procedure of a program.
The program name itself follows the PEP in the call stack. The program entry
procedure is a piece of code that is generated by the compiler to initialize
(activate) the program. The program entry procedure passes control to the
program code that was written by the programmer.

Service programs, as well as OPM programs, have no PEP. Subprocedures and
modules that are called by the bound call have no PEP either.

Entries appear in the call stack and disappear from it, as they are called and
ended (in last in, first out (LIFO) order).

As an example, the last part of the call stack is shown in Figure 12.

Figure 12. Call stack for program E01REG

Program E01REG is waiting in the EXFMT operation. The entry QWSGET is a
control boundary. The entry < PEP_E01REG is the next higher control boundary.
If the < sign precedes the name, a shortened name of a system procedure is
displayed. To see the full name, place the cursor in the name PEP_E01REG, and
press F22. The full name is _QRNP_PEP_E01REG.

4.2.7.2 Error handling in ILE
If an error message arises in a procedure, it is processed by various program
functions in the following order:

1. Error resulting indicator (in the "Lo" column) or the (E) modifier in some
operations that can be tested by the %ERROR built-in function handles the
error message.

2. ILE condition handler can handle escape, status, and notify error messages
coming from any procedure.

Display Call Stack
System:

Job: QPADEV000L User: VZUPKA Number: 068858

Thread: 000000AB

Program
Rqs or ---Activation Group---
Lvl Procedure Number Name
4 QUIMGFLW 0000000001 *DFTACTGRP
5 QUICMD 0000000001 *DFTACTGRP

< PEP_E01REG 0000004482 QILE
E01REG 0000004482 QILE

< X_WS_EXFMT 0000004482 QILE
QWSGET 0000000001 *DFTACTGRP
QT3REQIO 0000000001 *DFTACTGRP
100 Who Knew You Could Do That with RPG IV?

3. INFSR subroutine (file information subroutine) handles the error messages
resulting from file I/O operations. The INFSR keyword cannot be specified if
the file is to be accessed by a subprocedure, or if NOMAIN is specified on the
H specification.

4. *PSSR subroutine (program status subroutine). A *PSSR can be defined in a
subprocedure, and each subprocedure can have its own *PSSR. Note that the
*PSSR in a subprocedure is local to that subprocedure. If you want the
subprocedures to share the same exception routine, you should have each
*PSSR call a shared procedure.

5. Default RPG exception handler.

The ILE condition handler is a new function with ILE, while the other functions are
also available in OPM.

For example, if a CHAIN (E) operation was specified and the record to be read is
locked by another job, you would catch the error message by using the %ERROR
built-in function.

If you specify a CHAIN operation without the (E) modifier (and without the "Lo"
resulting indicator), you can catch the error message by specifying an INFSR
subroutine in the main procedure.

If you did not specify any of the preceding functions, you could catch error
messages using a condition handler program. You write it as a module with a
special interface. You register the module by calling a special ILE API
(CEEHDLR) in the program or the procedure in which you expect errors. The
condition handler receives control whenever an error message arrives in the
program or procedure message queue. You can test for messages that have type
*STATUS, *NOTIFY, *ESCAPE, and function check, which is a special type of an
*ESCAPE message (CPF9999).

The RPG specific functions (1, 3, and 4 from the above list), when applied, mark
the message as handled, and the message is not propagated any further.

The last function, default RPG exception handler, does not mark the message,
but sends it to the message queue of the next higher entry in the stack. There,
the message is processed again according to the hierarchy described above.
This process is called percolation and continues until the message is handled or,
a control boundary is reached.

If the message is not handled by the procedure in the control boundary, the
system handles the *ESCAPE message as follows:

1. The *ESCAPE message is written in the job log, and a function check
message (CPF9999) is generated and written in the job log.

2. The system returns to the point where the *ESCAPE message was originated
and repeats the percolating process with the function check message.

3. At the control boundary, a RNQxxxx inquiry message can be generated and
sent to the *EXT message queue if the control boundary is just below the
command line. This only applies to main procedures.

4. The CEE9901 application error *ESCAPE message is generated and sent to
the message queue of the call stack entry just above the control boundary.
An ILE guide for the RPG programmer 101

For *STATUS and *NOTIFY error message types, see ILE Concepts, SC41-5606.

4.2.7.3 ILE condition handler interface
ILE conditions are OS/400 exception messages represented in a manner
independent of the system. An ILE condition token issued to represent an ILE
condition. Condition handling refers to the ILE functions that allow you to handle
errors separately from language-specific error handling. You can use condition
handling to handle error messages in programs composed of modules written in
different ILE languages. ILE condition handling includes the following functions:

• Ability to dynamically register an ILE condition handler
• Ability to signal an ILE condition
• Condition token architecture
• Optional condition token feedback codes for bindable ILE APIs

The condition handler program accepts input parameters (as described in Table
2) that tells the kind of message it received and from which procedure.

Table 2. Input parameters for the condition handler

Note: RtnAct is a result code that the condition handler sends to the system to
take a specific action. The values for the result code are as follows:

10 Resume at the next instruction, and handle the condition, as follows:

• Function Check (severity 4): The message appears in the job log.
• *ESCAPE (severity 2-4): The message appears in the job log.
• *STATUS (severity 1): The message does not appear in the job log.
• *NOTIFY: The default reply is sent and the message appears in the job log.

20 Percolate to the next condition handler.

21 Percolate to the next call stack entry. This can skip a high-level language
condition handler for this call stack entry.

30 Promote to the next condition handler.

31 Promote to the next call stack entry. This may skip a high-level language
condition handler for this call stack entry.

Condition token is a 12-byte data structure that contains information identifying
the incoming message. Figure 13 describes this structure. The same structure
(as seen in Table 3) applies to the NewToken.

Variable
name

Description RPG IV
data type

Values

CondToken Incoming message
identification

Char(12) See Table 3

ProcName Name of the procedure that
generated the message

Char(10) Reference to the name
(a pointer)

RtnAct Return action: What the
system should do with the
message

Integer(10) See note

NewToken A new token value Char(12) New message information
in case of promotion
102 Who Knew You Could Do That with RPG IV?

Figure 13. ILE condition token layout

Table 3. Condition token structure

Note: Case, Severity, and Control are binary numbers placed in bit fields in a
byte:

Case A 2-bit field that defines the format of the Condition_ID portion of the
token. ILE conditions are always case 1.

Severity A 3-bit binary integer that indicates the severity of the condition. The
Severity and MsgSev fields contain the same information. Actually
used numbers are 0 to 4.

Control A 3-bit field containing flags that describe or control various aspects of
condition handling. The third bit specifies whether the Facility_ID
has been assigned by IBM.

Message type and message number uniquely identify the incoming message.

You can process a message so that you replace it by a different message and
send it to the system. This way of handling messages is called promotion. The
result code is 30 or 31 in this case. Promotion is accomplished using the ILE API
program CEENCOD.

Variable name Description RPG IV
data type

Values

MsgSev Message severity Integer(5) 0, 1, 2, 3, 4

MsgNo Message number Integer(5)
or Char(2)

For example, X’1211’ for
divide by zero

CaseSevCtl Case, Severity, Control in
one byte

Char(1) See note

MsgType or
FacilityID

Message type Char(3) For example, CEE, CPF,
MCH RNX

MsgKey or
ISInfo

Unique message key Char(4) A unique binary code

Condition_ID

0 32 3734 40 64

Facility_ID I_S_Info

Control

Severity

Case

MsgSev

0

Msg_No

16

The ILE condition ID
always has case 1 format
An ILE guide for the RPG programmer 103

The CEENCOD program builds a new message according to the parameters
listed in Table 4.

Table 4. Parameters for the CEENCOD program to promote a message

Note: Message file QUSRMSG must be created using the Create Message File
CRTMSGF command to enable promotion of USRxxxx messages. Message
descriptions prefixed with USR must be added in the message file using the
ADDMSGD command. You can change the message file name to QxxxMSG, but
the messages must begin with xxx. This is because you cannot specify the
message file name in the parameters.

Having this information, the CEENCOD program builds a new condition token in
the NewToken variable, which is sent (promoted) to the caller as a new message
by the condition handler.

4.2.7.4 An example of the condition handler
A condition handling program is illustrated under the name ILEERRHDL in the
following example. The data definition part of the program is shown first.

*
* Member ILEERRHDL from ILESRC in RPGISCOOL
*
* ILEERRHDL - ILE error handling program
* The program is called as soon as an error message comes that
* is not handled by means of RPG IV error indicator or %Error
* built in function, or by an INFSR subroutine.
* The program must be registered in a procedure.
*

H

*==
* Data definitions
*==

* Program prototypes 1
/COPY RPGISCOOL/ILESRC,ILEERRPR

* Input and output parameters 5
D IleErrHdl PI

Variable name Description RPG IV
data type

Values

MsgSeverity Message severity Integer(5) 0 to 4

MsgNumber Message number Integer(5)
or Char(2)

For example, X’1211’

Case Format of message Integer(5) Always 1

Severity Message severity Integer(5) Same as MsgSeverity

Control A control flag Integer(5) 0, 1

FacilityID Message type Char(3) Three letters, for example,
USR; see note

MsgKey Unique message key Char(4) A unique binary code

NewToken Structured as the
condition token

Char(12) New message information

a variable name
or *OMIT

Feedback information
from CEENCOD

Char(12)
or omitted

*OMIT or a 12-byte token
104 Who Knew You Could Do That with RPG IV?

D CondToken 12A
D ProcName 10A
D RtnAct 10I 0
D NewToken 12A

* Message information structure (CondToken and NewToken) 2

D CondTokenPtr S *

D CondTokenDS DS based(CondTokenPtr)
D MsgSev 5I 0
D MsgNum 2A
D CaseSevCtl 1A
D MsgType 3A
D MsgKey 4A

* Constants 3

D ResumeNextMI C Const(10)
D PercolCallStk C Const(20)
D PercolNextHnd C Const(21)
D PromoteCallStk C Const(30)
D PromoteNextHnd C Const(31)

* Parameter data for CEENCOD procedure 4

D MsgSeverity S 5I 0 Inz(4)
D Case S 5I 0 Inz(1)
D Severity S 5I 0 Inz(4)
D Control S 5I 0 Inz(0)
D FacilityID S 3A Inz('USR')

Note the following explanation:

1 Parameters for the CEENCOD ILE program are specified as a prototype in the
/COPY member file ILEERRPR. The last parameter (the feedback data
structure) is omitted.

2 The condition token data structure is shown.

3 Result codes are defined as constants.

4 Parameter data for the CEENCOD program are initialized. MsgNumber an
FacilityId variables are overwritten dynamically.

5 Entry parameters for the condition handler are specified as an *ENTRY
parameter list because the condition handler is not a prototyped procedure.

The procedural part of the ILEERRHDL program tests for error messages and
takes appropriate actions.

*==
* Mainline program
*==

C Eval CondTokenPtr = %addr(CondToken)

C Select

* Error RNX1218 Unable to allocate a record in file xxx... 1

C When MsgType = 'RNX' and MsgNum = X'1218'
C CallP ILECondHandler(MsgSeverity : MsgNum : Case :
C Severity : Control : FacilityID :
C MsgKey : NewToken : *Omit)
C Eval RtnAct = PromoteCallStk

* Error RNX1021 Attempt to write a duplicate record to file xxx... 2

C When MsgType = 'RNX' and MsgNum = X'1021'
C CallP ILECondHandler(MsgSeverity : MsgNum : Case :
C Severity : Control : FacilityID :
C MsgKey : NewToken : *Omit)
C Eval RtnAct = PromoteNextHnd
An ILE guide for the RPG programmer 105

* Error MCH1211 3
* Attempt made to divide by zero for fixed point operation.
C When MsgType = 'MCH' and MsgNum = X'1211'
C Eval RtnAct = ResumeNextMI
* 4
C Other
C Eval RtnAct = PercolNextHnd

C EndSl

C Return

1 If the incoming message is RNX1218 (a locked record), the condition handler
decides to change it into a new message USR1218 and promote it to the next
call stack entry. The new message is created by calling the CEENCOD ILE
API program with parameters.

2 If the incoming message is RNX1021 (duplicate record), the condition handler
changes the message into USR1021 and promotes it to the next call stack
entry.

3 If the incoming message is MCH1211 (divide by zero), the condition handler
tells the system to resume processing at the next instruction.

4 All the other messages are percolated to the next call stack entry handler.

ILE condition handler API prototypes
This file contains the ILE condition handler API prototype used in this example. It
must exist prior to creating any of the modules used in this example. A good
description of the ILE condition handler APIs can be found in System API
Reference - OS/400 Integrated Language Environment (ILE) CEE APIs,
SC41-5861.

* ILEERRPR from ILESRC in RPGISCOOL
*--
* Input parameters
D IleErrHdl PR ExtPgm('ILEERRHDL')
D CondToken 12A
D ProcName 10A
D RtnAct 10I 0
D NewToken 12A

* Parameters for CEENCOD procedure (own message construction)
D ILECondHandler PR ExtProc('CEENCOD')
D MsgSeverity 5I 0
D MsgNumber 2A
D Case 5I 0
D Severity 5I 0
D Control 5I 0
D FacilityID 3A
D MsgKey 4A
D NewToken 12A
D Feedback 12A Options(*Omit)

D RegCondHdlr PR ExtProc('CEEHDLR')
D CondHdlr@ * PROCPTR
D ProcName 10A
D Feedback 12A Options(*Omit)

D UnRegCondHdlr PR ExtProc('CEEHDLU')
D CondHdlr@ * PROCPTR
D Feedback 12A Options(*Omit)
106 Who Knew You Could Do That with RPG IV?

4.2.7.5 A program that uses the condition handler
The following program, E01REG, uses the condition handler ILEERRHDL. The
program updates the STOCK database file with a check if the newly entered item
exists in the ITEMS file. This is done by calling the module E01ITEMS and
checking the return code. The E01ITEMS module is bound by copy along with the
E01REG and ILEERRHDL modules into the program E01REG. The module
E01ITEMS contains an artificially generated error (divide by zero) to demonstrate
how the condition handler (ILEERRHDL) handles messages in different modules.

Before the condition handler is used, it must be registered. This is done by calling
the CEEHDLR ILE API program with certain parameters.

When the condition handler is no longer needed, it can be unregistered by the
CEEHDLU ILE API program. Only parts of the E01REG module are shown.

First, the data definition part of the E01REG module is shown:

* E01REG from ILESRC in RPGISCOOL
*
* Errors, condition handler registration

FSTOCK UF A E K Disk
FSTOCKW CF E WorkStn

* Program prototypes 3
/COPY RPGISCOOL/ILESRC,ILEERRPR
*==
* Data definitions
*==

* Procedure pointer to ILEERRHDL program
D CondHdlr@ S * Procptr 1
D Inz(%Paddr('ILEERRHDL'))

* PSDS data structure (this procedure name)
D SDS NOOPT
D ProcName *PROC 2

Create this module by using the following command:

CRTRPGMOD MODULE(RPGISCOOL/ILEERRHDL) SRCFILE(RPGISCOOL/ILESRC)
SRCMBR(*MODULE)

This module is used in 4.2.7.6, “Creating a program that uses the condition
handler” on page 109.

Try it yourself

Notice the variable CondHdlr@ used in the following E01REG module has
broken the style guide rule found in 2.1.3.3, “Avoid using special characters
(for example, @, #, $) when naming items” on page 22.

Avoid using the "@" symbol to indicate the variable is a pointer. A good method
is to use the "Hungarian Notation," where the first character of the variable
name indicates the data type of the variable, such as, pCustNbr or cActStsCde.

An exercise for you
An ILE guide for the RPG programmer 107

* Key list for STOCK file

C Key KList
C KFld STOCKNO
C KFld ITEMNBR

Note the following points:

1 The E01REG module defines a procedure pointer CondHdlr@ to the condition
handler program (pointer to its main procedure). The name "ILEERRHDL" is
an import symbol that will be resolved into an address by binding the
ILEERRHDL module (or a service program in which the module could be
placed).

2 The current procedure name is taken from the PSDS data structure.

3 The CondHdlr@ pointer is specified as a first parameter and ProcName as the
second parameter for the condition handler registration. The third parameter,
feedback information, is omitted. The prototype parameters can be found in
the /COPY member in “ILE condition handler API prototypes” on page 106.

To unregister the condition handler, only the CondHdlr@ pointer is needed.
The prototype parameters can be found in the /COPY member in “ILE
condition handler API prototypes” on page 106.

The relevant parts of the procedural part of the E01REG module are shown here:

*==
* Mainline program
*==

* Register an ILE condition handler program 1
C CallP RegCondHdlr(CondHdlr@ : ProcName : *Omit)

* Process stock data
...

* Check item if present in the ITEMS file.
* If present, RC is *OFF, if not present, RC is *ON.
* A divide by zero error is artificially produced in E01ITEMS.
*
C CallB 'E01ITEMS' 2
C Parm ITEMNBR
C *In80 Parm RC 1
...

* Read stock record and lock it for update.
* RNX1218 error message is sent to the program message queue
* if the record is locked by another job.

C Key Chain STOCK 3
...

* Unregister the ILE condition handler program 4
C CallP UnregCondHdlr(CondHdlr@ : *Omit)
C Eval *InLR = *On
C Return

Note these points:

1 The E01REG module registers the condition handler by the CALLB bound call
with the parameter list.

2 After some processing, a check for item number is made by calling the
E01ITEMS module. In the module, a divide by zero error occurs (see the
108 Who Knew You Could Do That with RPG IV?

following source for E01ITEMS). The condition handler practically ignores this
message.

3 After some more processing, a record is read from the STOCK file for update.
If another job holds the same record locked, the RNX1218 error message is
generated by the system and sent to the program message queue. The
condition handler handles it as required. It replaces the message by the
USR1218 message, which has a different text.

4 The condition handler is unregistered.

For completeness, the E01ITEMS module is shown here:

* E01ITEMS from ILESRC in RPGISCOOL
*
* E01ITEMS - Check if an item is in ITEMS file

FITEMS IF E K Disk

D RC S 1N
D Divisor S 15P 0 Inz(*Zero)

* Entry parameter list
C *Entry PList
C Parm ITEMNBR
C Parm RC

* Look up the item number
C ITEMNBR SetLL ITEMS
* If not found - Set RC *ON else set RC *OFF
C Eval RC = Not %Found

* Generate an artificial error (divide by zero)
C Eval Divisor = 0
C Eval UNITPR = UNITPR / Divisor

C Return

4.2.7.6 Creating a program that uses the condition handler
You can put these modules together in a number of ways. The major question is
where to place the condition handler. The condition handler may be one that was
written specifically for a particular application area, and in this case, therefore,
not likely to be useful in other programs. It will most likely be bound by copy into
the program with the application modules.

However, in our example, we tried to make our condition handler fairly generic so
that this same handler would be useful for many different programs. Therefore, it
makes more sense to place the condition handler in a service program. In a real
application environment, you would most likely place it in a service program

You can create these two modules by using the two following commands. The
two physical files and the display file used in this example must have been
created prior to creating the modules, as described in 4.2.7.8, “Files used in
the condition handling example” on page 113.

CRTRPGMOD MODULE(RPGISCOOL/E01REG) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*MODULE)
CRTRPGMOD MODULE(RPGISCOOL/E01ITEMS) SRCFILE(RPGISCOOL/ILESRC)
SRCMBR(*MODULE)

These modules are used in the following section.

Try it yourself
An ILE guide for the RPG programmer 109

together with other modules, perhaps even other ILE condition handling modules.
However, for purposes of simplicity in our example, we place our condition
handler module in a service program by itself. This service program is then bound
by reference to the application program. The application program contains the
application function modules bound together by copy.

The commands to create this scenario are shown here:

CRTSRVPGM SRVPGM(RPGISCOOL/SILEERRHDL) MODULE(RPGISCOOL/ILEERRHDL)
EXPORT(*ALL) ACTGRP(*CALLER)

CRTPGM PGM(RPGISCOOL/E01REG) MODULE(RPGISCOOL/E01REG RPGISCOOL/E01ITEMS)
BNDSRVPGM(RPGISCOOL/SILEERRHDL) ACTGRP(QILE)

4.2.7.7 Running a program that uses the condition handler
We call the program E01REG from the command line in a session. We let a
record be locked while being displayed on the screen. Then, we call the same
program from another session and try to display the same record. After some
time (60 seconds is default), the second call ends with a message on the
command line as Figure 14 shows.

Figure 14. An error message after running a program with a condition handle

If we display the job log, the screen shown in Figure 15 appears.

Figure 15. Job log messages resulting from a program call with errors

Parameters or command
===> call rpgiscool/e01reg
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys
Application error. USR1218 unmonitored by E01REG at statement *N, instructi

3>> call rpgiscool/e01reg
Attempt made to divide by zero for fixed point operation. 1
Record 1 in use by job 068858/VZUPKA/QPADEV000L.

? C
Record 1 in use by job 068858/VZUPKA/QPADEV000L. 2

? C
Another job holds the same record. Wait please, or call the system
administrator to find out who is it. 3

Application error. USR1218 unmonitored by E01REG at statement *N,
instruction X'0000'.

Application error. USR1218 unmonitored by E01REG at statement *N,
instruction X'0000'. 4

Bottom
Press Enter to continue.

F3=Exit F5=Refresh F12=Cancel F17=Top F18=Bottom
110 Who Knew You Could Do That with RPG IV?

Let us look closer at some of the messages:

1 The divide by zero was generated by the module E01ITEMS in the service
program SE01ITEMS as Figure 16 shows.

2 Message Record 1 in use... is sent by the system to module E01REG as seen
in Figure 17.

3 The message Another job holds the same record... is our message USR1218
that replaced the message RNX1218 (which doesn’t appear in the job log).
Details are shown in Figure 18 on page 112.

4 The message Application error... is the special *ESCAPE message sent by
the system to the calling procedure QUOCMD above the control boundary of
the QILE activation group. Figure 19 on page 112 shows the message details.
This is the message displayed on the message line.

Figure 16. Details of the divide by zero message

Figure 17. Details of the record in use message

Message ID : MCH1211 Severity : 40
Date sent : 06/16/99 Time sent : 16:04:00
Message type : Escape
CCSID : 65535

From program : SE01ITEMS
From library : RPGISCOOL
From module : E01ITEMS
From procedure : E01ITEMS
From statement : 23

To program : SE01ITEMS
To library : RPGISCOOL
To module : E01ITEMS
To procedure : E01ITEMS
To statement : 23

Message ID : CPF5027 Severity : 30
Date sent : 06/16/99 Time sent : 16:04:05
Message type : Notify
CCSID : 65535

From program : QDBSIGEX
From library : QSYS
Instruction : 014A

To program : E01REG
To library : RPGISCOOL
To module : E01REG
To procedure : E01REG
To statement : 102
An ILE guide for the RPG programmer 111

Figure 18. Details of the USR1218 message

Figure 19. Details of the CEE9901 message

Since we did not leave any error unhandled by the condition handler, no
CPF9999 Function Check message appeared.

If we specified result code 10 (ResumeNextMI) for "other" messages in the
condition handler, our job log would appear as shown in Figure 20, for example:

C Eval RtnAct = ResumeNextMI

Now, the function check escape messages are processed by the condition
handler according to the rules in 4.2.7.2, “Error handling in ILE” on page 100.

Message ID : USR1218 Severity : 00
Date sent : 06/16/99 Time sent : 16:04:06
Message type : Escape

From program : E01REG
From library : RPGISCOOL
From module : E01REG
From procedure : E01REG
From statement : 102

To program : E01REG
To library : RPGISCOOL
To module : E01REG
To procedure : _QRNP_PEP_E01REG
To statement : *N

Message ID : CEE9901 Severity : 30
Date sent : 06/16/99 Time sent : 16:04:06
Message type : Escape
CCSID : 65535

From program : QLEAWI
From library : QSYS
From module : QLEDEH
From procedure : Q LE leDefaultEh
From statement : 232

To program : QUOCMD
To library : QSYS
Instruction : 01DA
112 Who Knew You Could Do That with RPG IV?

Figure 20. Job log with function check messages

4.2.7.8 Files used in the condition handling example
For completeness, here is the source of the files used in the conditional error
handling examples. The STOCK and STOCKW files are used in programs
E01REG.

Physical file description: STOCK

* STOCK from ILESRC in RPGISCOOL
* Stock inventory file

A UNIQUE
A R STOCKR
* Data fields
A STOCKNO 5 COLHDG('Stock' 'number')
A ITEMNBR 5 COLHDG('Item' 'number')
A QTYONHND 15 0 COLHDG('Quantity' 'onhand')
* Key fields
A K STOCKNO
A K ITEMNBR

3 > call rpgiscool/e01reg
Attempt made to divide by zero for fixed point operation.
Record 1 in use by job 068858/VZUPKA/QPADEV000L.

? C
Record 1 in use by job 068858/VZUPKA/QPADEV000L.

? C
Another program holds the same record. Wait please, or call the system
administrator to find out who is it.

Function check. USR1218 unmonitored by E01REG at statement *N, instruction
X'0000'.

Duplicate record key in member STOCK.
Duplicate key not allowed for member STOCK.

? C
Duplicate key not allowed for member STOCK.

? C
You try to add a duplicate record. Review your program.
Function check. USR1021 unmonitored by E01REG at statement *N, instruction
X'0000'.

To recreate a similar test case, you can use the following instructions. You
need two sessions active on the same system. Be sure the physical files
STOCK and ITEMS contain the sample data listed in the following section.

ADDLIBLE LIB(RPGISCOOL)
CALL PGM(RPGISCOOL/E01REG)

On the first screen, enter the following data:

Stock number: 00001
Item number: 00001

Press Enter. On another session, enter the same commands and the same
data. After some time (60 seconds is default), the second call ends with a
message on the command line as shown in Figure 14 on page 110.

Try it yourself
An ILE guide for the RPG programmer 113

Physical file content: STOCK
This is a sample content of the STOCK file, which is used with our running
example:

Stock Item Quantity
number number onhand
00001 00001 12

Display file STOCKW

* STOCKW from ILESRC in RPGISCOOL
* Stock inventory entry display file

A DSPSIZ(24 80 *DS3)
A CA03(03 'Exit')
A CA12(12 'Cancel')
* Format 1 - Prompt for the key
A R STOCKW01
A 3 4'Enter data.'
A 5 4'Stock number:'
A STOCKNO 5A B 5 22
A 6 4'Item number:'
A ITEMNBR 5A B 6 22
A 80 7 22'Item does not exist'
A 23 3'F3=Exit'
A 23 16'F12=Cancel'
* Format 2 - Display data from stock
A R STOCKW02
A CF23(23 'Delete')
A 3 4'Stock inventory.'
A 5 4'Stock number:'
A STOCKNO 5A O 5 22
A 6 4'Item number:'
A ITEMNBR 5A O 6 22
A 7 4'Quantity:'
A QTYONHND 15Y 0B 7 22EDTCDE(Q)
A 23 4'F3=Exit'
A 23 15'F12=Cancel'
A 23 30'F23=Delete'

Physical file ITEMS
The ITEMS file is used in the E01ITEMS program:

* ITEMS from ILESRC in RPGISCOOL
* Item master file

A UNIQUE
A R ITEMSR
* Item number
A ITEMNBR 5 COLHDG('Item' 'number')
* Unit price
A UNITPR 9 2 COLHDG('Unit' 'price')
* Item description
A ITEMDESC 50 COLHDG('Item description')

* Key field
A K ITEMNBR
114 Who Knew You Could Do That with RPG IV?

4.3 Additional CL commands and useful ILE APIs

Other means for working with modules, service programs, and programs are
covered in the next two sections at a high-level.

4.3.1 Additional CL commands
Other commands and parameters may be useful if working on a larger project.
The Update Program (UPDPGM) and Update Service Program (UPDSRVPGM)
commands make it possible to create a new version of a program or service
program without having all the modules available. They replace selected modules
in the program (or service program) with new versions of these modules without
needing the other modules. Some consequences of this approach may be
undesirable. For further information on updating programs and service programs,
see ILE Concepts, SC41-5606.

The OPTION(*UNRSLVREF) parameter in the CRTPGM and CRTSRVPGM
commands (also in the UPDPGM and UPDSRVPGM commands) allows
unresolved references (imports) in the program or service program. This can be
useful if testing a larger application. Some modules can refer to subprocedures
that do not exist yet, but their interface is already known.

For further information on updating programs and service programs and
unresolved references, see ILE Concepts, SC41-5606.

4.3.2 Some useful APIs to get information on ILE objects
If you plan to write your own software to control changes in modules, service
programs, and programs, you could use some API programs that are available for
ILE. They are described in OS/400 Program and CL Command APIs V4R4,
SC41-5870. The following API programs may be especially useful:

• The List Module Information (QBNLMODI) API lists information about
modules. The information is placed in a user space specified by you. This API
is similar to the Display Module (DSPMOD) command. You can use the
QBNLMODI API to:

– List the symbols defined that can be exported to other modules
– List the symbols that are defined external to the module
– List procedure names and their type

Create the two physical files and the display file by using the following
commands:

CRTPF FILE(RPGISCOOL/STOCK) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*FILE)
CRTPF FILE(RPGISCOOL/ITEMS) SRCFILE(RPGISCOOL/ILESRC) SRCMBR(*FILE)
CRTPRTF FILE(RPGISCOOL/REPORTS) SRCFILE(RPGISCOOL/ILESRC)

These files are used by the two programs described in 4.2.7.6, “Creating a
program that uses the condition handler” on page 109. The STOCK file can
contain data specified in “Physical file content: STOCK” on page 114. An
example of the contents of file ITEMS is listed in “File ITEMS” on page 95.

Try it yourself
An ILE guide for the RPG programmer 115

– List objects that are referenced when the module is bound into an ILE
program or service program

– List copyright information

• The List Service Program Information (QBNLSPGM) API gives information
about service programs, similar to the Display Service Program
(DSPSRVPGM) command. The information is placed in a user space specified
by you. You can use the QBNLSPGM API to:

– List modules bound into a service program
– List service programs bound to a service program
– List data items exported to the activation group
– List data item imports that are resolved by weak exports that were exported

to the activation group
– List copyrights of a service program
– List procedure export information of a service program
– List data export information of a service program
– List signatures of a service program

• The List ILE Program Information (QBNLPGMI) API gives information about
ILE programs, similar to the Display Program (DSPPGM) command. The
information is placed in a user space specified by you. You can use the
QBNLPGMI API to:

– List modules bound into an ILE program
– List service programs bound to an ILE program
– List data items exported to the activation group
– List data item imports that are resolved by weak exports that were exported

to the activation group
– List copyrights of an ILE program

You can, for example, list signatures of service programs bound in a program
using the QBNLSPGM API to get the "old" signatures. You can also list all "new"
signatures of these service programs by using the QBNLPGMI API and compare
the two lists if they match. If there is a mismatch, you can trigger a new binding of
the program by using the CRTPGM command.

Be prepared to inspect lists of lists, in some cases, because the information
retrieved by these APIs is organized hierarchically.

4.4 More information about ILE and shared open data paths

For additional information on shared open data paths, refer to the AS/400
Information Center found at http://www.as400.ibm.com/infocenter

Once inside the Information Center, select Database and File Systems -> Data
Management or DB2 UDB for AS/400 Database Programming.

You can also consult these publications for more information:

• There is essential information on ILE in ILE Concepts, SC41-5606, and ILE
RPG for AS/400 Programmer's Guide, SC09-2507.

• ILE Application Development Example V4R1, SC41-5602, shows how to use
ILE concepts in practice.

• Another good source of information on ILE is Moving to Integrated Language
Environment for RPG IV, GG24-4358.
116 Who Knew You Could Do That with RPG IV?

• ILE APIs, such as CEETREC for ending an activation group or CEEHDLR for
registration a condition handler program and many more, are described in
OS/400 Integrated Language Environment (ILE) CEE APIs V4R4, SC41-5861.

• OS/400 Program and CL Command APIs V4R4, SC41-5870, contains APIs
associated with ILE objects, especially those for retrieving information on
modules, service programs, and programs in user space.
An ILE guide for the RPG programmer 117

118 Who Knew You Could Do That with RPG IV?

Chapter 5. Exploring new ways to exploit your AS/400 system

This chapter focuses on demonstrating how you can enhance your applications
by accessing the wealth of Application Programming Interfaces (APIs) that are
shipped with every AS/400 system. Perhaps we should point out at this stage that
we are using the term "API" here in its most liberal and literal sense. That is, we
are including in this category any callable interface on the system.

While some of these APIs have been available to RPG programmers for many
years, many others only became accessible with the advent of prototyped calls in
V3R2 and V3R6. Hopefully we can help you to uncover a couple of "gems" that
may have escaped your notice. For example, did you know that your RPG IV
programs can:

• Access the C library math functions?
• Drive TCP/IP Sockets applications?
• Directly process "PC type" files in the Integrated File System?
• Drive Web pages through CGI interfaces?
• Use the Lotus Domino HiTest APIs?

Be assured that if and when the required APIs are available on the AS/400
system, RPG IV will be there ready and able to exploit them!

We start by looking at a case study in 5.1, “Exploiting the C function library: A
case study” on page 119. Until V3R2 and V3R6, these were the exclusive
preserve of the C programmer.

5.1 Exploiting the C function library: A case study

In this section, we discuss the steps required to interface RPG IV programs to the
C function library. We start with a simple example that uses one of the math
functions to demonstrate the basics of interfacing to C routines.

The second example demonstrates interfacing to C routines that use pointers and
null terminated strings. It is important to understand how RPG interfaces to such
routines because they are common in the C world.

The third example demonstrates the use of more complex functions, in our case,
the C sort and search routines. These can be invaluable when handling large
arrays and Multiple Occurrence Data Structures (MODS).

The instructions for compiling the examples in this section suggest that you
use the Create Bound RPG Program (CRTBNDRPG) command. We have done
this deliberately to help dispel the myth that binding to service programs (the
mechanism used by IBM to package the C functions) can only be done if you
use the Create RPG Module (CRTRPGMOD) and Create Program (CRTPGM)
commands. We are confident that if you already understand how to build
programs by using a combination of the CRTRPGMOD and CRTPGM
commands, you can adapt the examples to meet your needs.

Using CRTBNDRPG
© Copyright IBM Corp. 2000 119

5.1.1 First things first
The simplest, and sometimes only, way to interface to C functions is by
prototyping the interface. The concept of prototyping is covered in more detail in
3.6.1, “The power of prototyping” on page 50. In this section, we reference those
features of prototyping essential or useful in working with C functions.

Before we look at the work examples, we also need to understand the different
ways in the which the C and RPG languages define data. Table 5 illustrates the
basic C data types and their corresponding RPG types. Note that some of the
RPG data types in this table are some of the newer data types for integers, which
map best to the C numeric data types. Signed and unsigned integer data (types I
and U, respectively) were introduced into RPG with V3R6 and V3R2. The
Floating point data type (F) was introduced in V3R7. The pointer data type (*) has
been in RPG IV since the beginning in V3R1.

Table 5. Correspondence of C and RPG IV data types

The following notes correspond to the references in Table 5:

1. The normal method of parameter passing in RPG IV is known as "by
reference". This means that a pointer to the data item is passed to the called
routine, not the actual data itself. C, on the other hand, passes parameters "by
value", which is the data itself is passed to the caller. In order for RPG to
correctly pass such parameters, the keyword VALUE must be coded on the
prototype. See also note 3.

2. In theory, char (which is a single byte character) should be represented in
RPG IV as 1A and short (which is a short integer) as 5I 0. However, in
practice, it is usually necessary to code such parameters as 10U 0 for char
and 10I 0 for short since the C compiler lengthens these parameter types. If
you are only using standard C library routines, this is unlikely to affect you
since the libraries rarely use these data types. However, if you have some
"home grown" C routines, you may run into this problem.

C RPG IV Notes

int, long 10I 0 Value See note 1.

unsigned int 10U 0 Value See note 1.

double 8F Value See note 1.

char 10U 0 Value See note 2.

short 10I 0 Value See note 2.

int * 10I 0 See note 3.

unsigned * 10U 0 See note 3.

double * 8F See note 3.

char * * Value Options(*String) can also be
used; see note 4.

void * * Value See note 3.

(*) * Value
ProcPtr

See note 5.
120 Who Knew You Could Do That with RPG IV?

3. C classifies its pointers by the type of data to which it "points". Therefore, int *
represents a pointer to an integer data item. RPG IV does not differentiate
pointers this way so all RPG data pointers are equivalent to the C void *
definition. As noted above, C expects parameters to be passed by value.
However, passing a field "by reference" and passing a pointer to that field "by
value" are equivalent. Since passing a parameter by field name rather than by
using %Addr(fieldname) is somewhat more intuitive to RPG programmers. We
used this notation in the table.

This is demonstrated in the following example. CProto1 and CProto2 both
reference the same C function (Cfunction), which takes a single parameter, an
int. The CALLP operations in the example illustrate the differences in
invocation.

Note: Both of the following CALLP operations successfully call the same
function passing the same data.

D CProto1 Pr ExtProc('Cfunction')
D PtrToInt * Value

D CProto2 Pr ExtProc('Cfunction')
D 10I 0

D MyParm1 S 10I 0

C CallP CProto1(%Addr(MyParm1))

C CallP CProto2(MyParm1)

The following variation illustrates the additional flexibility gained by adding the
CONST keyword. The CONST keyword tells the compiler to allow a constant
value or a variable with a different format (in terms of numeric type, length, or
decimal positions) to be passed on the call. The CONST keyword is discussed
in 3.6.1, “The power of prototyping” on page 50. Now, not only can MyParm1
be used, but MyParm2 (a packed field) and the literal 25 can also be used.
The compiler generates the additional logic to convert the field to the correct
format (if required) and pass it to the C function.

D CProto3 Pr ExtProc('Cfunction')
D 10I 0 Const

D MyParm1 S 10I 0

D MyParm2 S 5P 0

C CallP CProto3(MyParm1)
C CallP CProto3(MyParm2)
C CallP CProto3(25)

4. C does not really have the concept of a fixed-length character string in the way
that RPG does. Most C functions expect strings to be variable in length and
terminated by a null character (hex ’00’). RPG IV prototypes support the
OPTIONS(*STRING) parameter to simplify the programmer’s life when
interfacing to such routines. Using this option allows the programmer to
specify either a field name or a pointer for the parameter. If a field name is
used, the compiler generates code to move the field to a temporary area, add
the null terminator, and then pass the address of this temporary area as the
parameter.
Exploring new ways to exploit your AS/400 system 121

Note: The *STRING option is available in RPG compilers on systems V3R7 or
later. If you are on V3R2 or V3R6, you need to add the null terminator
yourself. There is an example of doing this later in 5.1.3.1, “Defining the
prototype” on page 125.

5. The keyword PROCPTR is used to qualify an RPG pointer (*) definition when
the parameter in question is a procedure pointer. These are required by some
C functions. For an example, see 5.1.4, “Searching and sorting: bsearch and
qsort” on page 128.

5.1.2 Simple math functions
While RPG IV provides the basic math functions (Add, Subtract, Multiply, Divide)
together with roots and exponents, it does not provide the higher level math
functions such as Sine, Cosine, and Tangent. Admittedly, these are not functions
that the average RPG programmer needs every day. But, when they are needed,
"faking them out" in RPG is a real problem. Not any more!

The sample program CMATH uses the C Cosine function cos to facilitate the
calculation of the length of the third side of a triangle given the length of two of
the sides and the angle between them.

5.1.2.1 Defining the prototype
The C definition of the Cosine function is:

double cos(double)

This is translated in RPG IV to the following prototype:

* Prototype for cos function
D Cosine Pr 8F ExtProc('cos')
D Double 8F Value

The first line defines the name by which the RPG program refers to the function
(Cosine) and also identifies the "real" procedure name of the function in the C
library (cos). The entry 8F identifies the size and data type (double) of the value
returned by the function.

It is essential to enter the name of the function in the correct case. Unlike regular
RPG IV names, the names of procedures are case-sensitive. If it were mistakenly
entered as "Cos," the CRTPGM step (or the bind step of CRTBNDRPG process)
would fail since the system would be unable to locate the procedure.

The second line defines the parameter that is to be passed to the function. Note
the use of the keyword VALUE, which, as noted earlier, is the default parameter
passing method for C functions. The parameter name (Double) is ignored by the
compiler and could have been left blank. We have chosen to adopt the
convention of using a name that identifies the type of parameter expected.

5.1.2.2 Invoking the function
This couldn’t be simpler. You use the RPG name that was given on the prototype,
just the same as you would if you were calling a subprocedure that you wrote
yourself.
122 Who Knew You Could Do That with RPG IV?

This is the part of the code where the Cosine function is invoked:

* Calculate length of side 3
C Eval(H) Length3 = ((Length1 ** 2) +
C (Length2 ** 2) -
C (2 * Length1 * Length2 *
C Cosine(Radians))) ** 0.5

5.1.2.3 Compiling the program: The magic of QC2LE
If you were to try to compile a program which included the prototype for cos
simply by using PDM option 14 (CRTBNDRPG) and accept all of the defaults, the
compile would fail. A study of the job log would reveal that it had failed because
the system binder (which is automatically invoked following a successful RPG
compile) was unable to resolve the symbol cos. In other words, the compiler does
not know where to find the procedure that implements the function.

We could spend hours studying all of the service programs on the system and
identifying which ones contained the required procedure. Then, we could bind it
to our program. Luckily there is an easier way.

In order for the C compiler to find its library routines, IBM supplies a Binding
Directory called QC2LE, which identifies the majority of service programs likely to
be needed by a C program. Although intended for use by the C compiler, it can
also be used by RPG programmers seeking to access C library functions.

One way of specifying this Binding Directory is through the BNDDIR parameter of
the CRTBNDRPG command:

CRTBNDRPG PGM(RPGISCOOL/CMATH) SRCFILE(RPGISCOOL/QRPGLESRC) DFTACTGRP(*NO)
BNDDIR(QC2LE)

This can be simplified by taking advantage of one of the enhancements made to
RPG IV in release V4R2. This provides the ability to embed compiler directives
directly on the H specification. In our example, we have specified both the Default
Activation Group parameter and the Binding Directory information. This allows
the CRTBNDRPG command to be used with its defaults since the embedded
values will override those specified on the command.

Here is the RPG IV code to achieve this:

H BndDir('QC2LE') DftActGrp(*NO)

5.1.2.4 Sample CMATH program
Here is the complete source code for our sample program:

* Filename: RPGISCOOL/CFUNCTSRC(CMATH)

H BndDir('QC2LE') DftActGrp(*NO)

* Prototype for cos function
D Cosine Pr 8F ExtProc('cos')
D double 8F Value

D PI C 3.14159

D Msg1 C 'Length of side 1'
D Msg2 C 'Length of side 2'
D Msg3 C 'Angle between sides'
D Msg4 C 'Length of side 3 is '

D Length1 S 3P 0 Inz
D Length2 S 3P 0 Inz
Exploring new ways to exploit your AS/400 system 123

D Length3 S 7P 2 Inz
D Angle S 3P 0 Inz
D Radians S 8F Inz
D Result S 30

* Ask user for lengths of sides and angle between them
C Msg1 Dsply Length1
C Msg2 Dsply Length2
C Msg3 Dsply Angle

* Convert Angle to Radians for use by Cos function
C Eval Radians = (PI * Angle) / 180

* Calculate length of side 3
C Eval(H) Length3 = ((Length1 ** 2) +
C (Length2 ** 2) -
C (2 * Length1 * Length2 *
C Cosine(Radians))) ** 0.5

* Edit length and create message to display result to user
C Eval Result = Msg4 + %Trim(%EditC(Length3:'1'))

C Result Dsply
C Eval *InLR = *On

5.1.3 String functions
C provides a number of string functions that can be useful to an RPG
programmer. The example we have chosen to illustrate is strtok. This function
can be used to break up a string into a series of "tokens". One use for this is to
break up a description into its component words. We may want to do this so that
we can eliminate multiple embedded blanks or certain special characters from the
text, or simply to count the number of words used.

strtok allows you to specify which characters are to be considered the "delimiter"
for these tokens. By this, we mean the individual characters (such as space,
period, and comma) that mark the boundaries between tokens. The function also
allows you to change the group of characters that represents the delimiter on
each call to the function.

If you are using V4R2 or later, you can recreate the sample program using the
following command:

CRTBNDRPG PGM(RPGISCOOL/CMATH) SRCFILE(RPGISCOOL/CFUNCTSRC)

If you are using a release prior to V4R2, you need to remove the H spec from
the source and use the following command:

CRTBNDRPG PGM(RPGISCOOL/CMATH) SRCFILE(RPGISCOOL/CFUNCTSRC) DFTACTGRP(*NO)
BNDDIR(QC2LE)

To test the program, call it. When prompted, enter 3 and 4 for the lengths of
sides 1 and 2, and 90 for the angle between them. The result should look like
this:

DSPLY Length of side 1 0
3
DSPLY Length of side 2 0
4
DSPLY Angle between sides 0
90
DSPLY Length of side 3 is 5.00

Try it yourself
124 Who Knew You Could Do That with RPG IV?

In our example, we use the colon as the delimiter for the first token, and a
comma, period, semi-colon, colon, and space for all subsequent tokens. This
means that if we input the string to our program:

"First token: Second, Third Last"

strtok would return "First Token", followed by "Second", then "Third", and finally
"Last". Even though there is a space between the words "First" and "token", it will
not be treated as a delimiter since the only valid delimiter at this point is a colon.
Note also that the delimiter itself is not returned as part of the string and that
multiple delimiters are ignored. This can be seen in the previous example where
the token "Second" was delimited by a comma and then a space.

5.1.3.1 Defining the prototype
Now that we have an idea of how the function works, let’s put it to use. The C
definition of the function is:

char * strtok (char * string , const char * delimiters)

There are a number of different ways in which this can be represented as an RPG
IV prototype. This is a simple version. However, it is not the one that we used in
the example, for reasons that will become apparent in a moment.

D GetToken Pr * ExtProc('strtok')
D String@ * Value
D Delimiters@ * Value

As before, the first line identifies the name by which the RPG program will invoke
the function (GetToken), its real name (strtok), and the data type of the function’s
return value (*).

The second line identifies the first parameter, the input string to be tokenized. The
C definition of this parameter (char * string) tells us that the parameter is a pointer
to a character string (*). As with all C parameters, it is to be passed by the value
(Value).

The third line identifies the second parameter, which contains the delimiters to be
used. Its definition is identical to that of the first parameter.

As noted earlier, C strings are normally null (X’00’) terminated, and strtok
certainly expects this. RPG character fields, on the other hand, are not. Because
of this, the RPG programmer must take steps to ensure that the string is null
terminated before passing it. One way of doing this would be as follows:

C Eval Temp1 = String + X’00’
C Eval Temp2 = Delims + X’00’
C Eval Token@ = GetToken(%Addr(Temp1):%Addr(Temp2))

Luckily, the people who designed the RPG IV compiler gave us the ability to
specify OPTIONS(*STRING) on the prototype. When we use this option, the
compiler checks if the parameter being passed is a pointer, or a character field. If
it is a field, the compiler moves the contents of the field to a temporary area, null
terminates it, and then passes the address of this temporary area as the
parameter. This is the version that we used in our example.

Note: The *STRING option was added to the compiler in V3R7.
Exploring new ways to exploit your AS/400 system 125

This is the modified version of the prototype:

D GetToken Pr * ExtProc('strtok')
D String@ * Value Options(*String)
D Delimiters@ * Value Options(*String)

This allows the function to be invoked like this:

C Eval Token@ = GetToken(String:Delims)

5.1.3.2 Invoking the function
The strtok function can be invoked in two different ways:

• If the first parameter is a valid string pointer, the function returns a pointer to
the first token found in that string, or a null pointer if no valid token is found.
This occurs, for example, if the delimiters included the space character and
the input string consisted of nothing but spaces.

In our example, the first invocation looks like this:

C Eval Token@ = GetToken(InpString : ':')

The field InpString is passed as the first parameter, and the literal ':' is
passed as the delimiter.

• If the second parameter is a null pointer, strtok returns a pointer to the next
token in the original string. As before, a null pointer is returned when there are
no (more) valid tokens.

This is the second invocation in the sample program:

C Eval Token@ = GetToken(*Null : Delimiters)

In this case, we pass a null pointer (*Null) as the first parameter to instruct
strtok to continue to process the string passed on the first invocation. Note,
however, that the second parameter now references the constant Delimiters
that contain the characters comma, period, semi-colon, colon, and space. This
allows us to demonstrate that the delimiters can be different on each
invocation of the function.

5.1.3.3 Additional RPG IV C string support
We should note at this point that strtok, like many other C functions, returns a
pointer to a string and not the string itself as an RPG program normally would.
Not only that, but the string referenced by the pointer will be null terminated. This
is not what our RPG code is expecting at all!

We can define a field as being BASED on the pointer returned by the function,
and then use a substring operation to get rid of the null terminator. However, this
would require extra work.

A far better approach is to take advantage of RPG IV’s %STR built-in function
(added in V3R7), which is designed to operate with C-type strings. When used on
the right-hand side of an expression, as in our example, this function returns the
data referenced by the pointer supplied, up to but not including the first null
character (x'00') found. This is how it looks in our example:

C Eval Token = %Str(Token@)

We can also use %STR on the left-hand side of an expression. In this case, the
function assigns the value of the right-hand side of the expression to the memory
referenced by the pointer, and adds a null-terminating byte at the end. In this, it is
126 Who Knew You Could Do That with RPG IV?

similar to the function of the prototype option OPTIONS(*STRING) described in
5.1.3.1, “Defining the prototype” on page 125.

5.1.3.4 Sample program STRTOK

Here is the complete source for the sample program:

* Filename: RPGISCOOL/CFUNCTSRC(STRTOK)

H BndDir('QC2LE') DftActGrp(*No)

D GetToken Pr * ExtProc('strtok')
D String@ * Value Options(*String)
D Delimiters@ * Value Options(*String)

D InpString S 36A
D Delimiters S 5A Inz(',.:; ')

D Token S 36A
D Token@ S *
D TokenCount S 3P 0
D Message S 52A

D Exit C 'Exit'
D AskForInput C 'Enter test data'
D AllDone C 'All tokens processed'

* Ask for initial input string

C AskForInput Dsply InpString

C DoW InpString <> Exit

C Eval Token@ = GetToken(InpString : ':')

C If Token@ <> *Null
C Eval Token = %Str(Token@)
C Eval Message = 'First Token is: ' + Token
C Eval TokenCount = 1
C Message Dsply
C EndIf

C DoW Token@ <> *Null

* To extract second and subsequent tokens, use *Null for the string
* parameter so that strtok will use the current string
* A new set of delimiters is being used. They can be changed on each call.

C Eval Token@ = GetToken(*Null : Delimiters)

* Continue to extract tokens until Token@ is null indicating end of string
C If Token@ <> *Null

* If a token is found increment the count and format the message
C Eval TokenCount = TokenCount + 1
C Eval Token = %Str(Token@)
C Eval Message = 'Token ' +
C %Trim(%EditC(TokenCount:'1')) +
C ' is: ' + Token
C Message Dsply

Notice that some of the following variables have broken the style guide rule
found in 2.1.3.3, “Avoid using special characters (for example, @, #, $) when
naming items” on page 22.

Avoid the "@" symbol to indicate the variable is a pointer. A good approach is
to use the "Hungarian Notation", where the first character of the variable name
indicates the data type of the variable, for example, pCustNbr or cActStsCde.

An exercise for you
Exploring new ways to exploit your AS/400 system 127

C Else
C AllDone Dsply
C EndIf

C EndDo

*Request next input string
C AskForInput Dsply InpString

C EndDo

C Eval *InLr = *On

*Request next input string
C AskForInput Dsply InpString

C EndDo

C Eval *InLr = *On

5.1.4 Searching and sorting: bsearch and qsort
While RPG IV provides the LOOKUP and SORTA operations to handle arrays,
they have a number of shortcomings. Luckily there are two C functions: qsort,
which sorts an area of memory, and bsearch, which searches. This example
demonstrates their use.

5.1.4.1 What’s wrong with LOOKUP and SORTA?
RPG programmers have been using these functions for years, so what’s wrong
with them? There are quite a few things as it turns out, for example:

• They operate directly only on arrays and not on Multiple Occurrence Data
Structures (MODS).

• They operate on the entire array as defined and not on the actual number of
active entries. That is, if the array is not full, the programmer has to make
allowance for the "empty" entries at the end of the array.

If you are using V4R2 or later, you can recreate the sample program using the
following command:

CRTBNDRPG PGM(RPGISCOOL/STRTOK) SRCFILE(RPGISCOOL/CFUNCTSRC)

If you are using a release prior to V4R2, you need to remove the H spec from
the source and use the following command:

CRTBNDRPG PGM(RPGISCOOL/STRTOK) SRCFILE(RPGISCOOL/CFUNCTSRC) DFTACTGRP(*NO)
BNDDIR(QC2LE)

To test the program, call it. When prompted, enter Token One: Two, Three

Four.End as the test data. The result should look like this:

DSPLY First Token is: Token One
DSPLY Token 2 is: Two
DSPLY Token 3 is: Three
DSPLY Token 4 is: Four
DSPLY Token 5 is: End
DSPLY All tokens processed

Try it yourself
128 Who Knew You Could Do That with RPG IV?

• Because they attempt to operate on the defined maximum number of elements
in the array, they are not suitable for use with BASED arrays (they are "based"
on a pointer).

The storage for these could be allocated by the programmer using the ALLOC
and REALLOC operation codes. They are often used to allow the programmer
to "grow" the amount of storage allocated to an array as records are added.
This avoids the need to reserve a large amount of storage "just in case".
Storage is only used as and when needed.

• They are somewhat inflexible in terms of the sort/search collating sequence.
For example, an array filled with customer names may not sequence "ACME"
and "Acme" together since the sort is based on the EBCDIIC sequence. In this
case, the characters "C" and "c" are not equivalent. The collating sequence of
the program could be changed so that SORTA would sequence them together.
However, this would also have the effect of changing the behavior of all
comparison operations in the program, not just those related to the array in
question.

5.1.4.2 Solving the problems
Can qsort and bsearch address all of these problems? Yes they can. Let’s look at
each of the points raised in the previous section:

• They can operate on any contiguous area of memory including arrays and
MODS.

• They operate on the number of elements specified by the programmer, not the
maximum capacity. They can even start the sort at an element other than the
first, much like LOOKUP. However, unlike LOOKUP, they can be told to stop
after a specific number of elements.

• They are suitable for use with BASED arrays and MODS.

• They are flexible. How flexible? As flexible as the RPG language. You
determine the collating sequence with your own RPG code! In the case of the
example given above, if your code converted the fields to upper case before
comparing them, "Acme" would have become "ACME" and the sequencing
would work as desired.

5.1.4.3 How do qsort and bsearch work?
Before we discuss the prototypes, a brief description of the operation of these
routines may be necessary. We’ll start with qsort since everything we say about it
is also applicable to bsearch.

qsort operates by selecting a pair of elements from the array (or MODS) and
passing them to a comparison procedure that you write in RPG. Such procedures
are often referred to as call back procedures because the procedure that you call
directly (qsort) will call "back" into your code to make sequencing decisons.

Your code examines the contents of the elements and determines the order in
which they should be sorted:

• If element 1 should follow element 2, your procedure should indicate a "High"
condition by returning a value of 1.

• If element 1 should precede element 2, you should indicate a "Low" condition
by returning a value of -1.
Exploring new ways to exploit your AS/400 system 129

• If the two elements are equal, you indicate that condition by returning a value
of zero.

qsort looks at the High/Low/Equal value that you return and then reorders the
elements as necessary. It then picks another pair and, again, calls your
procedure to identify how they should be ordered. Once qsort determines that all
elements are in the correct sequence, it returns control to your main line code.

bsearch differs only in that one of the elements it passes to your code is the
search key that your mainline code supplied. The other is the current candidate
entry. Again, your comparison routine returns High/Low/Equal and bsearch uses
this to narrow its search range. Eventually, bsearch either finds the correct entry,
in which case it returns a pointer to the item, or it returns a null pointer to indicate
that no match was found.

Note: The type of search used by bsearch is sometimes referred to as a "binary
chop". This is significantly faster than the method employed by LOOKUP, but will
only work on sequenced data.

5.1.4.4 Defining the prototypes: qsort
The C definition of the qsort function is:

void qsort(void *base, size_t num, size_t width,

int(*compare)(const void *key, const void *element))

While this may look a lot more complex than our previous examples, it really is
not. Here is the RPG IV translation of the main part:

D SortIt PR ExtProc('qsort')
D DataStart * Value
D Elements 10U 0 Value
D Size 10U 0 Value
D CompFunc * ProcPtr Value

As before, the first line defines the name by which the RPG program refers to the
function (SortIt) and also identifies the "real" procedure name of the function
(qsort).

In the C definition, the function name is preceded by the word void indicating that
this function does not return a value. We indicate this on the prototype by leaving
the size and data type areas of the PR line blank. This means that we cannot use
the function in an expression, but instead must use CALLP (Call with Prototype)
to invoke the function.

The second line defines the first parameter as a pointer (*) passed by VALUE and
should contain the address of the first byte of the array or MODS to be sorted.
This corresponds to the entry void *base in the C definition. In this case the word
void indicates that the pointer can "point" to any type of data. Since all data
pointers in RPG are of this type, nothing special is needed in the RPG prototype.

The second parameter is an unsigned integer (10U 0) passed by VALUE, which
contains a count of the number of elements to be sorted. This corresponds to
size_t num in the C definition. size_t is defined by IBM on the AS/400 system as
being equivalent to an int.
130 Who Knew You Could Do That with RPG IV?

The third defines the size of each element in the array in bytes. The mapping of
the C to the RPG IV definition should be clear on this one.

The fourth parameter is the tough one. If you look at the RPG IV definition, you
can see that it is a pointer (*) passed by value. The additional keyword,
PROCPTR, indicates that this is a procedure pointer. It is used to enable qsort to
call an RPG IV subprocedure, which will be responsible for making the actual
sequencing decisions. It corresponds to (*compare) in the C definition.

At this point, you may be wondering what the rest of the C definition is all about.
Simply put, it defines the parameters that qsort passes to your RPG IV
comparison procedure. It also defines the format of the High/Low/Equal return
value that qsort expects you to pass back to it.

The procedure interface in our RPG procedure looks like this:

D SeqArray PI 10 I 0
D Element1@ * Value
D Element2@ * Value

As you can see, the procedure is defined as returning a 4-byte integer. This may
strike you as a little odd considering that only the values 1, 0, and -1 are returned.
This is normal for a C function. The original C definition specifies this requirement
through the keyword int in the original C definition:

int(*compare)(const void *key, const void *element))

The two parameters passed to our procedure (Element1@ and Element2@) are
pointers to the pair of items that qsort wants us to compare. They equate to the
entries const void *key and const void *element respectively. Since these are
pointers to the data items, and not the items themselves, we must associate them
with fields before we can compare the data. This is achieved by using the
keyword BASED on the field definition. Also notice that we used the keyword
LIKE to define the format of the field. This ensures that the definition matches
that of the original array elements.

D Element1 S Like(Array) Based(Element1@)
D Element2 S Like(Array) Based(Element2@)

The effect of this is that when our procedure is called, we have immediate access
to the two items, just as if they had been directly passed as parameters. We then
compare the items, and return the appropriate value to qsort.

C Select
C When Element1 < Element2
C Return Low
C When Element1 > Element2
C Return High
C Other
C Return Equal
C EndSl

It is worth noting here that passing a pointer to a data item is the normal method
of passing parameters on the AS/400 system. This is known as passing "by
reference". That is to say, a reference (pointer) to the data is passed rather than
the actual data itself. See 3.6.1, “The power of prototyping” on page 50, for more
information.
Exploring new ways to exploit your AS/400 system 131

When you perform a conventional CALL or CALLB, the compiler effectively
inserts the BASED keyword "under the covers", and you don’t have to concern
yourself with it.

We chose, in our example, to use the BASED method so that you can appreciate
the mechanics of the process. There will be occasions when you need to use this
method, for example, when the function you are calling returns an array of
pointers. If you find this difficult to understand, look at 5.1.4.8, “An alternative
approach” on page 136, where a more conventional RPG approach is used to
achieve the same effect. The result is a little less flexible but perhaps more "RPG
like".

5.1.4.5 Invoking qsort
Since qsort does not return a value, it has to be invoked by the CALLP (CALL
with Prototype) op-code. This is the actual code:

C CallP SortIt(Array@ : Count :
C %Size(Array) : %PAddr('SEQARRAY'))

Note that the name of the sequencing procedure SeqArray is specified in
uppercase (’SEQARRAY’). This is because by default, RPG IV converts all
names to uppercase. If for some reason you wish to use a different name, for
example, to retain the mixed-case name used in the source, you can do so by
using the EXTPROC keyword on the prototype. See ILE RPG for AS/400
Reference, SC09-2508, for more information.

5.1.4.6 Using bsearch
As noted earlier, bsearch is similar to qsort. The major difference is that bsearch
requires an additional parameter (LookFor), which supplies the value for which to
search.

As you can see from the prototype, this is in the form of a pointer, passed as
usual by value. Here is the prototype:

D FindIt PR * ExtProc('bsearch')
D LookFor * Value
D DataStart * Value
D Elements 10U 0 Value
D Size 10U 0 Value
D CompFunc * ProcPtr Value

The RPG IV comparison procedure (CheckMatch) operates the same way as the
earlier SeqArray procedure, returning a High/Low/Equal value to the bsearch
function. Because bsearch is a function and returns a value, it can be invoked
directly in an EVAL operation:

C Eval Entry@ = FindIt(%Addr(SearchFor) : Array@ :
C Count : %Size(Array) :
C %PAddr('CHECKMATCH'))

As you can see the returned value is assigned to the pointer Entry@, which is
used as the base pointer for the field Entry. If bsearch found a match (of course it
was the RPG IV procedure CHECKMATCH that really identified the match),
Entry@ points to the correct array element that can be accessed through the field
Entry. If no match is found, Entry@ is null. This is the signal for the program to
add the entry to the array and re-sequence the array if necessary.
132 Who Knew You Could Do That with RPG IV?

The following portion of the program demonstrates that Pointer arithmetic can be
used to determine the actual array element (Elem) that the pointer is currently
referencing:

C Eval Elem = ((Entry@ - Array@)
C / %Size(Array)) + 1

This, in effect, renders the field Entry obsolete since it maps the same element as
Array(Elem).

The technique demonstrated here to determine the actual element number can
be useful in situations where there are multiple entries with the same value. This
could occur for example, if you were to sort a Multiple Occurrence Data Structure
(MODS) into Customer Name in City sequence. There may be multiple entries for
the same city. In such cases, you cannot guarantee that the element identified by
bsearch is, in fact, the first one of that value. If it is important that you process the
first such element, you can do so by calculating the element number as shown
and then "walk" backwards up the array until you have identified the first entry in
the group.

5.1.4.7 The sample program
The program prompts the user to enter a search value. This can be any string up
to 10 characters long. bsearch is then used to attempt to locate the string in the
array. If the string is located, the program reports the element number at which it
was found and prompts for another search string. If the string is not found, the
program adds it to the end of the current array. If necessary, it then sorts the
array using qsort.

Note that the array in this program uses dynamic memory, which is allocated by
the ALLOC and REALLOC op-codes. This allows the array to grow in size as
required.

H DftActGrp(*No) BndDir('QC2LE')

/Copy CSortPr

D Array S 10 Dim(100) Based(Array@)

D Entry S 10 Based(Entry@)

D Count S 3P 0 Inz
D ArrayMax S 3P 0 Inz(10)
D Memory S 5P 0
D Elem S 3P 0

D SearchFor S 10

D FoundMsg S 24

Notice that some of the following variables have broken the style guide rule
found in 2.1.3.3, “Avoid using special characters (for example, @, #, $) when
naming items” on page 22.

Avoid the "@" symbol to indicate the variable is a pointer. A good method is to
use the "Hungarian Notation", where the first character of the variable name
indicates the data type of the variable, for example, pCustNbr or cActStsCde.

An exercise for you
Exploring new ways to exploit your AS/400 system 133

D NotFoundMsg C 'No entry found - added to list'

* Prototypes for compare routines for search and sort
D CheckMatch Pr 10I 0
D CheckFor@ * Value
D Candidate@ * Value

D SeqArray Pr 10I 0
D Element1@ * Value
D Element2@ * Value

* Set up initial memory allocation and load a dummy entry
C Eval Memory = %Size(Array) * ArrayMax
C Alloc Memory Array@
C Eval Array(1) = 'first one'
C Eval Count = Count + 1

* Ask for value to search for and exit if 'quit'
C 'Search For?' Dsply SearchFor

C DoU SearchFor = 'quit'

* Call search routine - CHECKMATCH is the RPG procedure that will
* determine if a match has been found
C Eval Entry@ = FindIt(%Addr(SearchFor) : Array@ :
C Count : %Size(Array) :
C %PAddr('CHECKMATCH'))

* If a match is found the pointer will be set non null, so we will
* calculate which element it is and display the result
C If Entry@ <> *Null

C Eval Elem = ((Entry@ - Array@)
C / %Size(Array)) + 1
C Eval FoundMsg = 'Found - Element # is ' +
C %TrimL(%EditC(Elem : 'Z'))
C FoundMsg Dsply

C Else

* If no match is found then we issue a message and add the entry to the
* end of the array after first increasing the storage if required
C NotFoundMsg Dsply

C Eval Count = Count + 1

C If Count > ArrayMax
C Eval Memory = %Size(Array) * ArrayMax
C ReAlloc Memory Array@
C EndIf

C Eval Array(Count) = SearchFor

* Check to see if the array is still in sequence and sort if not
C If SearchFor <= Array(Count -1)
C CallP SortIt(Array@ : Count :
C %Size(Array) : %PAddr('SEQARRAY'))
C EndIf

C EndIf

C 'Search For?' Dsply SearchFor

C EndDo

C Eval *InLR = *On
* Beginning of search procedure CheckMatch - this will be called by bsearch
P CheckMatch B

D PI 10I 0
D CheckFor@ * Value
D Candidate@ * Value

D CheckFor S Like(Array) Based(CheckFor@)
D Candidate S Like(Array) Based(Candidate@)

C Select
134 Who Knew You Could Do That with RPG IV?

C When CheckFor < Candidate
C Return Low
C When CheckFor > Candidate
C Return High
C Other
C Return Equal
C EndSl

P CheckMatch E

* Beginning of sequencing procedure SeqArray - this will be called by qsort
P SeqArray B

D PI 10I 0
D Element1@ * Value
D Element2@ * Value

D Element1 S Like(Array) Based(Element1@)
D Element2 S Like(Array) Based(Element2@)

C Select
C When Element1 < Element2
C Return Low
C When Element1 > Element2
C Return High
C Other
C Return Equal
C EndSl

P SeqArray E

If you are using V4R2 or later, recreate the sample program using the following
command:

CRTBNDRPG PGM(RPGISCOOL/SORTARRAY) SRCFILE(RPGISCOOL/CFUNCTSRC)

If you are using a release prior to V4R2, you need to remove the H spec from
the source and use the following command:

CRTBNDRPG PGM(RPGISCOOL/SORTARRAY) SRCFILE(RPGISCOOL/CFUNCTSRC)
DFTACTGRP(*NO) BNDDIR(QC2LE)

To test the program, call it. When prompted, enter a word. In the following
sample, we used "qsort". Continue to enter a word each time you are
prompted. We used "bsearch", followed by "qsort" again. As you will see when
you run the program, if the word was previously entered, the program informs
you of its position in the array.

Your results should look something like this:

DSPLY Enter string to search for (quit to exit)
qsort
DSPLY No entry found - added to list
DSPLY Enter string to search for (quit to exit) qsort
bsearch
DSPLY No entry found - added to list
DSPLY Enter string to search for (quit to exit) bsearch
qsort
DSPLY Found - Element # is 2

Try it yourself
Exploring new ways to exploit your AS/400 system 135

5.1.4.8 An alternative approach
As noted earlier, there is an alternative method that we can use for coding the
parameters for our RPG sequencing and searching procedures. The changes to
the SeqArray procedure is shown here. Similar changes would be made to
CheckMatch:

D SeqArray Pr 10I 0
D Element1 Like(Array)
D Element2 Like(Array)
:
:
P SeqArray B
D PI 10I 0
D Element1 Like(Array)
D Element2 Like(Array)
:

Note that the fields Element1 and Element2 are now defined directly in the
procedure interface (PI). There is no need for a separate field definition and
associated BASED keyword. The compiler does this for us.

The changes to the prototypes and procedure interfaces are the only ones
required. The invocations of qsort and bsearch remain unchanged, as does the
rest of the program logic.

We can use this approach because passing a field by reference results in a
pointer to the data being passed to the called procedure. This is equivalent to
passing a pointer to the field by value and using that pointer to base the field. See
3.6.1, “The power of prototyping” on page 50, for more information.

If you find this approach easier to understand, by all means, use it. You will find a
version of the program that uses this method in source member SORTARRAY2.
Other than the name of the source member, all of the other details for compiling
and testing the program are the same.

A recommendation
Seeing these changes, you may be tempted to consider revising the original
prototypes for qsort and bsearch to use the same approach. This would not be a
good idea. If you were to do this, you would have to code a separate prototype for
each different array or MODS that you want to sort or search to accommodate the
differences in length and data type of the array. By using pointers, we create a
more generic prototype that is able to handle any kind of structure.

5.2 Data queue APIs

Data queues are a type of system object that a user can create to establish
communication between two high-level language (HLL) programs. One HLL
program can send data to the data queue, and another HLL program can receive
data from the data queue. The receiving program can wait for the data and accept
it immediately or receive the data later.

The usability of data queues is not restricted only to the programs residing on the
same AS/400 system. They can be used also to establish communications
between PC clients and AS/400 server or between high-level language programs
running on different AS/400 systems. Figure 21 shows the different
communications possibilities by using data queues.
136 Who Knew You Could Do That with RPG IV?

Figure 21. Data queue communications possibilities

Note the following points as they refer to Figure 21:

1 Communication between HLL programs residing on the same AS/400 system
is the most common example of data queue implementation. We concentrate
our on this discussion later.

2 Data queues are also an excellent way to communicate between the PC and
AS/400 programs. Client Access/400 provides a complete Application
Programming Interface (API), which allows client application to interact with
AS/400 data queues. This interface allows the client application to create and
delete data queues, as well as send and read free format messages from
data queues.

The data queue interface uses an AS/400 host server to actually execute the
data queue commands against the AS/400 objects. This server can be started
either using the STRHOSTSVR SERVER(*DTAQ) CL command, or through
data queue APIs. PC programs can be written in any language that provides a
*DTAQ interface such as C, Delphi, Visual Basic, and VisualAge for RPG.

3 By creating a data queue with the type *DDM, we actually refer to a remote
data queue on the target system. Using this type of data queue, programs on
different AS/400 systems can efficiently exchange data.

4 If there is a need to exchange data with other non-AS/400 systems, either
IBM or non-IBM, a separate product MQSeries can be used. This product
enables applications to use message queuing to participate in
message-driven processing. This allows applications to communicate with
each other on the same or different platforms by using the appropriate
message queuing software products. With MQSeries products, all
applications use the same kind of messages, while communications protocols
are hidden from the applications.

AS/400 B

*DTAQ

MQSeries

AS/400 A

*DTAQ

MQSeries

*DTAQ

*PGM

PC

non-AS/400

MQSeries

DDM

3333

MQSeries
4444

CA/400

Java

2222

*PGM

1111
137

MQSeries is a robust solution not only for heterogeneous systems but also for
communications between two HLL on the same AS/400 system. For more
information on MQSeries, go to: http://www.software.ibm.com/ts/mqseries/

The advantages of using data queues are:

• Data queues are a fast means of asynchronous communication between two
jobs. Using a data queue to send and receive data requires less system
resource than using database files, message queues, or data areas.

• Using data queues frees a job from performing work. If the job is an interactive
job, the data queue APIs can provide better response time and decrease the
size of the interactive program. For example, several workstation users may
enter a transaction that involves updating and adding to several files. In this
case, the system can perform better if the interactive jobs submit the request
for the transaction to a single batch processing job.

• More than one job can receive data from the same data queue. This is an
advantage in certain applications where the number of entries to be processed
is greater than one job can handle within the desired performance restraints.
For example, if several printers are available to print orders, several
interactive jobs can send requests to a single data queue. A separate job for
each printer can receive data from the data queue in first-in-first-out (FIFO),
last-in-first-out (LIFO), or keyed-queue order.

• Data queues have the ability to attach a sender ID to each message being
placed on the queue. The sender ID, an attribute of the data queue that is
established when the queue is created, contains the qualified job name and
current user profile.

• When receiving data from a data queue, you can set a time-out so that the job
waits until an entry arrives on the data queue.

• You can send to, receive from, and retrieve a description of a data queue in
any HLL program. This is done by calling the API programs:

– Send to a Data Queue (QSNDDTAQ)
– Receive from Data Queue (QRCVDTAQ)
– Retrieve Data Queue Message (QMHRDQM)
– Clear Data Queue (QCLRDTAQ)
– Retrieve Data Queue Description (QMHQRDQD) APIs

Here is a quote from MQSeries for AS/400 Application Programming
Reference (RPG), SC33-1957:

"There are two approaches that can be taken when using the Message
Queue Interface (MQI) from within an RPG program:

• Dynamic calls to the QMQM program interface. This method is available
to OPM and ILE RPG programs.

• Bound Calls to the MQI procedures. This method is available only to ILE
RPG programs.

Using bound calls is generally the preferred method, particularly when the
program is making repeated calls to the MQI, as it requires less resource."

MQseries understands RPG IV!
138 Who Knew You Could Do That with RPG IV?

5.2.1 Creating and deleting data queues
Before using a data queue, you must first create it using the Create Data Queue
(CRTDTAQ) command.

The following parameters are important when creating a data queue:

• TYPE

Specifies the type of data queue to be created: a standard data queue (*STD)
or a distributed data management (*DDM) data queue.

• MAXLEN

Specifies the maximum length of the entry that is sent to the data queue. Valid
values range from 1 through 64512.

• FORCE

Specifies whether the data queue is forced to auxiliary storage when entries
are sent or received for this data queue.

• SEQ

Specifies the sequence in which entries are received from the data queue:

– *FIFO: Data queue entries are received in a first-in first-out sequence
– *LIFO: Data queue entries are received in a last-in first-out sequence
– *KEYED: Data queue entries are received by key. A key is a prefix added to

an entry by its sender. Additional parameter KEYLEN specifies the length
of the key. Valid values range from 1 through 256.

• SENDERID

Specifies a sender ID to be attached to each message sent to the Data
Queue. The ID contains the job name and the sender's current user profile.

To delete data queue, use the Delete Data Queue (DLTDTAQ) command.

5.2.2 List of data queue APIs
The access to data queues is possible only through the group of APIs that can be
used from any high-level language program, including RPG IV.

5.2.2.1 Send Data Queue (QSNDDTAQ) API
The Send Data Queue (QSNDDTAQ) API sends data to the specified data queue.

When an entry is sent to a standard data queue, the storage allocated for each
entry is the value specified for the maximum entry length on the Create Data
Queue (CRTDTAQ) command.

This API has required and optional parameters as shown in Table 6.

Table 6. Required parameter group for QSNDDTAQ

Number Description Use Data type

1 Data queue name Input Char(10)

2 Library name Input Char(10)

3 Length of data to be sent to data queue Input Packed(5,0)

4 Data to be sent to data queue Input Char(*)
139

For the library name, you can use the special values *LIBL (library list) or
*CURLIB (current library).

To improve data queue performance, the data queue APIs remember addressing
information for the last data queues used. This occurs when a specific (not *LIBL
or *CURLIB) value is provided for the library name.

Because the addressing information is saved, users of this API should be aware
of the following case. The data queue may be moved to another library or
renamed, and a new data queue is created with the same name and library as the
data queue that was renamed or moved. In this case, the job continues to
reference the original data queue, not the newly created data queue.

If the value specified for the data length is greater than the length specified by the
maximum length (MAXLEN) parameter on the Create Data Queue (CRTDTAQ)
command, an error occurs.

If the length of data field is larger than the data length value parameter, only the
number of characters (beginning from the left) defined by the data length are sent
to the data queue.

If the length of data field is smaller than the data length value parameter,
unexpected results can occur.

Table 7 shows optional parameter group 1, which is used only to send data queue
entries with key.

Table 7. Optional parameter group 1 for QSNDDTAQ

The maximum value for the key length is the value that is specified on the
KEYLEN parameter on the Create Data Queue (CRTDTAQ) command.

The key data value must be at least as long as the value specified in the key
length parameter. Otherwise, unexpected results can occur.

Table 8. Optional parameter group 2 for QSNDDTAQ

This parameter only applies to DDM data queues. It specifies whether the send
data queue request to a DDM data queue should be processed asynchronously.
Valid values are *YES and *NO.

5.2.2.2 Receive Data Queue (QRCVDTAQ) API
The Receive Data Queue (QRCVDTAQ) API receives data from the specified
data queue. When more than one program has a receive pending on a data
queue at one time, a data entry sent to the data queue is received by only one of
the programs. The program with the highest run priority receives the entry.

Number Description Use Data type

5 Length of key data Input Packed(3,0)

6 Key data Input Char(*)

Number Description Use Data type

7 Asynchronous request Input Char(10)
140 Who Knew You Could Do That with RPG IV?

This API has required and optional parameters as shown in Table 9.

Table 9. Required parameter group for QRCVDTAQ

The same comments for the data queue name and the library given with
QSNDDTAQ API are valid also for QRCVDTAQ.

The data length parameter contains the number of characters received from the
data queue. If a time out occurs and no data is received from the data queue, this
field is set to zero.

If the length of data field is larger than the size of the message received, only the
number of characters (beginning from the left), as defined by the message
received from the data queue, are changed.

If the length of a data field is smaller than the value specified for the MAXLEN
parameter on the Create Data Queue (CRTDTAQ) command, and the actual
length of this field is not specified in the size of data receiver parameter,
unexpected results can occur.

The Wait parameter specifies the amount of time, in seconds, to wait if no entries
exist on the data queue:

0 Continue processing immediately. If no entry exists, the call completes
immediately with the length of the data parameter set to zero.

> 0 The number of seconds to wait. The maximum is 99999, which allows
a wait time of approximately 28 hours.

< 0 Waits forever.

Table 10 shows optional parameter group 1, which is used to retrieve data queue
entries by key, or if sender information is to be received.

Table 10. Optional parameter group 1 for QRCVDTAQ

The Key order parameter defines the comparison criteria between the keys of
messages on the data queue and the key data parameter. When the system
searches for the requested key, the entries are searched in ascending order from

Number Description Use Data type

1 Data queue name Input Char(10)

2 Library name Input Char(10)

3 Length of data received from data queue Output Packed(5,0)

4 Data received from data queue Output Char(*)

5 Wait time Input Packed(5,0)

Number Description Use Data type

6 Key order Input Char(2)

7 Length of key data Input Packed(3,0)

8 Key data I/O Char(*)

9 Length of sender information Input Packed(3,0)

10 Sender information Output Char(*)
141

the lowest value key to the highest value key until a match is found. If there are
entries with duplicate keys, the entry that was put on the queue first is received.
Valid values are:

GT Greater than
LT Less than
NE Not equal
EQ Equal
GE Greater than or equal
LE Less than or equal

The key length parameter specifies the length of the key. If this parameter is
specified, it must be zero for non-keyed data queues. For keyed data queues, it
must be equal to the length specified on the KEYLEN parameter on the Create
Data Queue (CRTDTAQ) command.

The Key data parameter defines the key to be used for receiving a message from
the data queue. The key of the received message is also returned in this field,
because it may be different from the key specified to search for. For example, if
the Key order parameter is GE (greater than or equal to), the key of the actually
received record may be greater than the requested key.

The length of the sender information parameter defines the requested size of the
sender information. The valid values are:

0 No sender information is returned.

8 Returns only the bytes returned and bytes available fields of the
sender information.

> 8 Return as much sender information as the length allows.

Format of sender information
The format and content of the sender information returned is shown in Table 11.

Table 11. Format of sender information

Table 12 shows optional parameter group 2, which is used to leave retrieved
entry in the data queue, receive only a part of entry, or to handle errors.

Table 12. Optional parameter group 2 for QRCVDTAQ

From To Description Type

1 4 Bytes returned Packed(7,0)

5 8 Bytes available Packed(7,0)

9 18 Job name Char(10)

19 28 User profile name Char(10)

29 34 Job number Char(6)

35 44 Senders current user profile name Char(10)

Number Description Use Data type

11 Remove message Input Char(10)

12 Size of data receiver variable Input Packed(5,0)

13 Error code I/O Char(*)
142 Who Knew You Could Do That with RPG IV?

The Remove message parameter specifies whether the message is to be
removed from the data queue when it is received. The valid values are:

*YES The message is removed from the data queue. This is the default
value if this parameter is not specified.

*NO The message is not removed from the data queue.

The data receiver size parameter defines the size of the variable to contain the
data received from the data queue. If a value of 0 is specified for this parameter,
no data is returned. If a size greater than 0 is specified, the data is copied into the
receiver up to the specified length. If the available data is longer than the length
specified, it is truncated. If this parameter is not specified, the entire message is
copied into the receiver variable.

Error code parameter
The error code parameter defines the variable-length data structure, which
contains the information associated with an error condition. It is common to all of
the system APIs and appears in many examples provided in this redbook.
Therefore, it deserves more attention and detailed explanation.

The error code parameter can be defined in two different formats: ERRC0100 or
ERRC0200. In our examples, we use only the format ERRC0100, which is
simpler but still provides enough information for error handling. For this reason,
we provide only the explanation of format ERRC0100. If you need additional error
information, refer to the Section "Error Code Parameter" in the IBM manual
AS/400 System API Reference, SC41-5801, for the explanation of the format
ERRC0200.

Table 13 shows the content of the error information in the format ERRC0100. The
error code structure for this format is provided in the QUSEC include member in
the source file QRPGLESRC in the QSYSINC library.

Table 13. Error format ERRC0100

Bytes provided is an input parameter, which controls whether an exception is
returned to the application or the error code structure is filled in with the
exception information. Consider these points:

• If this field is 0, all other fields are ignored and an exception is returned.

• If the value is equal to or greater than 8, the rest of the error code structure is
filled in with the exception information associated with the error, and no
exception is returned.

Bytes available is the length of the error information returned from the API. If this
is 0, no error was detected and none of the fields that follow this field in the
structure are changed.

From To Description Use Type

1 4 Bytes provided Input Integer(10)

5 8 Bytes available Output Integer(10)

9 15 Exception ID Output Char(7)

16 16 Reserved Output Char(1)

17 * Exception data Output Char(*)
143

The Exception ID field contains the message identifier for the error condition.
Exception data is a variable-length character field, which contains the insert data
associated with the exception ID.

5.2.2.3 Retrieve Data Queue Message (QMHRDQM) API
The Retrieve Data Queue Message (QMHRDQM) API retrieves one or more
messages from a data queue.

The QMHRDQM API allows the retrieval of multiple messages per call. The
message selection information parameter allows you to have some control over
which messages are returned. The QMHRDQM API can be used to retrieve:

• The first or last message of a data queue
• All messages of a data queue
• Selected messages from a keyed data queue

The QMHRDQM API is similar in function to the QRCVDTAQ API. However, the
QRCVDTAQ API removes the received message from the data queue.
QMHRDQM API does not remove received messages.

Table 14 shows the parameters for this API. All of them are required.

Table 14. Required parameter group for QMHRDQM

The receiver variable specifies the program variable that receives the information
requested. You can specify the size of the area to be smaller than the format
requested as long as you specify the length parameter correctly. As a result, the
API returns only the data that the area can hold.

The Length of receiver variable parameter may be specified up to the size of the
receiver variable specified in the program. If the length of receiver variable
parameter specified is larger than the allocated size of the receiver variable
specified in the program, the results are not predictable. The minimum length is 8
bytes.

The format name specifies the format of the data to be placed in the receiver
variable. You must use the RDQM0100 format.

The qualified data queue name defines the data queue to be retrieved. The first
10 characters contain the data queue name, and the second 10 characters
contain the data queue library name. You can use special values *CURLIB and
*LIBL for the library name.

Number Description Use Data type

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Integer(10)

3 Format name Input Char(8)

4 Qualified data queue name Input Char(20)

5 Message selection information Input Char(*)

6 Length of message selection information Input Integer(10)

7 Message selection information format name Input Char(8)

8 Error code I/O Char(*)
144 Who Knew You Could Do That with RPG IV?

Message selection information identifies which message (or messages) you want
to retrieve. The layout of this parameter is determined by the value of the
message selection information format name.

The length of the message selection information parameter must be 8 bytes for
RDQS0100 and 16 bytes plus the size of the key for RDQS0200.

For the format of the message selection information, you can choose between the
following formats:

• RDQS0100: Format to select messages when using nonkeyed data queues.
• RDQS0200: Format to select messages when using keyed data queues.

The Error code parameter defines the structure in which to return error
information. Refer to “Error code parameter” on page 143.

RDQM0100 format
Table 15 shows the fields returned in the RDQM0100 format of the receiver
variable parameter.

Table 15. RDQM0100 format

From To Description Type

1 4 Bytes returned Integer(10)

5 8 Bytes available Integer(10)

9 12 Number of messages returned Integer(10)

13 16 Number of messages available Integer(10)

17 20 Message key length returned Integer(10)

21 24 Message key length available Integer(10)

25 28 Message text length returned Integer(10)

29 32 Message text length available Integer(10)

33 36 Entry length returned Integer(10)

37 40 Entry length available Integer(10)

41 44 Offset to first message entry Integer(10)

45 54 Actual data queue library Char(10)

55 * Reserved Char(*)

These fields repeat for
each message retrieved

Offset to next message entry Integer(10)

Message enqueue date and time Char(8)

Message key Char(*)

Message text Char(*)

Reserved Char(*)
145

RDQS0100 format
Table 16 describes the RDQS0100 format of the message selection information
parameter. This format is used with data queues when selection with keys is not
necessary. This format cannot be used with keyed data queues.

Table 16. RDQS0100 format

The valid values for the selection type in the format RDQS0100 are:

A All messages are to be returned
F The first message is to be returned
L The last message is to be return

RDQS0200 format
Table 17 describes the RDQS0200 format of the message selection information
parameter. This format is used to retrieve messages from data queues when
selection with keys is necessary. When using this format, all messages satisfying
the key search order are returned. The messages are returned in first-in first-out
order.

Table 17. RDQS0200 format

The valid value for the selection type in the format RDQS0200 is:

K Messages meeting the key criteria are to be returned

The Key search order parameter specifies the comparison criteria between the
message key specified in the RDQS0200 format and the actual keys of messages
in the data queue. Valid values are:

GT All messages with a key greater than the one specified in the key field
are to be returned.

LT All messages with a key less than the one specified in the key field are
to be returned.

NE All messages with a key not equal to the one specified in the key field
are to be returned.

From To Description Type

1 1 Selection type Char(1)

2 4 Reserved Char(3)

5 8 Number of message text bytes to retrieve Integer(10)

From To Description Type

1 1 Selection type Char(1)

2 3 Key search order Char(2)

4 4 Reserved Char(1)

5 8 Number of message text bytes to retrieve Integer(10)

9 12 Number of message key bytes to retrieve Integer(10)

13 16 Length of key Integer(10)

17 * Key Char(*)
146 Who Knew You Could Do That with RPG IV?

EQ All messages with a key equal to the one specified in the key field are
to be returned.

GE All messages with a key greater than or equal to the one specified in
the key field are to be returned.

LE All messages with a key less than or equal to the one specified in the
key field are to be returned.

5.2.2.4 Retrieve Data Queue Description (QMHQRDQD) API
The Retrieve Data Queue Description (QMHQRDQD) API retrieves the
description and attributes of a data queue. Consider, for example, the number of
entries currently on the data queue, the text description of the data queue,
whether the queue includes sender ID information, or whether the data queue is
keyed.

Table 18 shows the parameters for this API. All of them are required.

Table 18. Required parameter group for QMHQRDQDM

The parameters for this API are the same as the first four parameters of the
QMHRDQM API, and are already described.

The valid format name for this API is RDQD0100.

RDQD0100 format
Table 19 shows the fields returned in the RDQM0100 format of the receiver
variable parameter.

Table 19. RDQD0100 format

Number Description Use Data type

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Integer(10)

3 Format name Input Char(8)

4 Qualified data queue name Input Char(20)

From To Description Type

1 4 Bytes returned Integer(10)

5 8 Bytes available Integer(10)

9 12 Message length Integer(10)

13 16 Key length Integer(10)

17 17 Sequence Char(1)

18 18 Include sender ID Char(1)

19 19 Force indicator Char(1)

20 69 Text description Char(50)

70 72 Reserved Char(3)

73 76 Number of messages Integer(10)

77 80 Maximum number of messages Integer(10)
147

The possible values returned for the Sequence parameter are:

F First-in first-out
K Keyed
L Last-in first-out

The possible values returned for the Include sender ID parameter are:

Y The sender ID is included when data is sent to the data queue.
N The sender ID is not included when data is sent to the data queue.

The possible values returned for the Force indicator parameter are:

Y The data queue is forced to auxiliary storage after entries are sent or
received.

N The data queue is not forced to auxiliary storage after entries are sent or
received.

5.2.2.5 Clear Data Queue (QCLRDTAQ) API
The Clear Data Queue (QCLRDTAQ) API clears all data from the specified data
queue or clears messages that match the key specification from a keyed data
queue.

This API has required and optional parameters. Table 20 shows the required
parameters.

Table 20. Required parameter group for QCLRDTAQ

These parameters are already described with QSNDDTAQ API.

Table 21 shows the optional parameter group, which is used to handle key
information or error data.

Table 21. Optional parameter group for QCLRDTAQ

These parameters are already described with QRCVDTAQ API.

5.2.2.6 RPG IV prototype for data queue APIs
Source member DTAQPROTO contains prototypes for calling data queue APIs
using an RPG IV program:

* Filename DTAQPROTO from APISRC in RPGISCOOL
*
* Prototype for API QSNDDTAQ - Send To a Data Queue
D SndDtaQ PR EXTPGM('QSNDDTAQ')
D DataQueueNam 10A Const
D DataQueueLib 10A Const
D DataLength 5P 0 Const

Number Description Use Data type

1 Data queue name Input Char(10)

2 Library name Input Char(10)

Number Description Use Data type

3 Key order Input Char(2)

4 Length of key data Input Packed(3,0)

5 Key data Input Char(*)

6 Error code I/O Char(*)
148 Who Knew You Could Do That with RPG IV?

D DataBuffer 32767A Const Options(*Varsize)
* Optional parameter group (Keyed DTAQ)
D KeyLength 3P 0 Const Options(*Nopass)
D KeyBuffer 256A Const Options(*Nopass : *Varsize)
D AsyncRqs 10A Const Options(*Nopass : *Varsize)
*
* Prototype for API QRCVDTAQ - Received From a Data Queue
D RcvDtaQ PR EXTPGM('QRCVDTAQ')
D DataQueueNam 10A Const
D DataQueueLib 10A Const
D DataLength 5P 0
D DataBuffer 32767A Options(*Varsize)
D WaitTime 5P 0 Const
* Optional parameter group 1 (Keyed DTAQ)
D KeyOrder 2A Const Options(*Nopass)
D KeyLength 3P 0 Const Options(*Nopass)
D KeyBuffer 256A Options(*Nopass : *Varsize)
D SndLength 3P 0 Const Options(*Nopass)
D SndBuffer 44A Options(*Nopass)
* Optional parameter group 2
D RemoveMsg 10A Const Options(*Nopass : *Omit)
D RcvSize 5P 0 Const Options(*Nopass : *Omit)
D Error 32767A Options(*Nopass : *Varsize)
*
* Prototype for API QCLRDTAQ - Clear Data Queue
D ClrDtaQ PR EXTPGM('QCLRDTAQ')
D DataQueueNam 10A Const
D DataQueueLib 10A Const
* Optional parameter group
D KeyOrder 2A Const Options(*Nopass)
D KeyLength 3P 0 Const Options(*Nopass : *Omit)
D KeyBuffer 256A Options(*Nopass : *Varsize)
D Error 32767A Options(*Nopass : *Varsize)
*
* Prototype for API QMHQRDQD - Retrieve Data Queue Description
D RcvDtaQDesc PR EXTPGM('QMHQRDQD')
D RcvVar 100A Options(*Varsize)
D RcvLength 10I 0 Const
D FormatName 8A Const
D DataQueueNamL 20A Const
*
* Prototype for API QMHRDQM - Retrieve Data Queue Message
D RcvDtaQMsg PR EXTPGM('QMHRDQM')
D RcvVar 32767A Options(*Varsize)
D LengthRcv 10I 0 Const
D FormatName 8A Const
D DataQueueNamL 20A Const
D MsgSltInf 32767A Const Options(*Varsize)
D MsgSltLength 10I 0 Const
D MsgSltFmtName 8A Const
D Error 32767A Options(*Varsize)

As you can see, we use the OPTIONS(*VARSIZE) keyword for all the parameters that
don’t require a predefined length, and specify the maximum field length as the
default. The keyword OPTIONS(*NOPASS) indicates optional parameters that aren’t
mandatory when using the prototype call command, although the APIs required
all the parameters from an optional group to be specified (or not) together. For
more information on those parameters, the OPTION(*OMIT), and the CONST

keywords, see 3.6.1, “The power of prototyping” on page 50.

5.2.3 Programming with data queue APIs
Data queue APIs are used in an RPG IV program the same way as other OPM
APIs.

5.2.3.1 Data queue API example
To illustrate the use of data queue APIs, we use two programs as shown in Figure
22 on page 150.
149

Figure 22. Communication between programs using data queues

Program DTAQCL is a client that requires some support from the server program
DTAQSR. They communicate through two data queues: DTAQFIFO and
DTAQKEYED.

The server program DTAQSR should be submitted as a batch job. It waits as long
as the first message arrives into data queue DTAQFIFO. After receiving this
message, the server sends response to the client into data queue DTAQKEYED.
For testing purposes, in our example, the server receives only one message and
ends. In a real application, the server would wait in an endless loop for next
message to serve.

Data queue DTAQFIFO supports FIFO sequence and provides sender
information. It is defined with the following command:

CRTDTAQ DTAQ(DTAQFIFO) MAXLEN(40) SENDERID(*YES)

Data queue DTAQKEYED supports a keyed sequence without sender information
and is defined with the following command:

CRTDTAQ DTAQ(DTAQKEYED) MAXLEN(40) SEQ(*KEYED) KEYLEN(6) SENDERID(*NO)

Client program

DTAQCL

Server program

DTAQSR

DTAQKEYED

DTAQFIFO

Key Data

Key Data

Key Data

Data Sender ID

Data Sender ID

Data Sender ID

The sequence algorithm is not efficient. It is an On**2 (OrderN squared) sort.
The more keyed entries that exist in the data queue, the slower it is.

The sort or sequencing of entries happens at different times. If the system is
IMPI, the sort happens when entries are enqueued. Adding entries gets slower
as more keyed entries are added. If the system is RISC, the sort occurs when
entries are dequeued. This results in a quite an exceptional delay to retrieve
the first entry if many (as in thousands) entries are on the data queue.

It is also worth mentioning that queues only grow in size. Although entries are
removed from the queue, the space is not reclaimed. If an application adds
entries faster than they can be processed, the queue will grow in size and
should be deleted and re-created to recover DASD space.

Keyed access performance
150 Who Knew You Could Do That with RPG IV?

5.2.3.2 Source code for program DTAQCL
The client program DTAQCL sends a message to the data queue DTAQFIFO,
which provides sender information, and waits for an answer on the data queue
DTAQKEYED. To access a corresponding answer, the program uses its own job
number, which is used as a key for data queue DTAQKEYED.

**
* Filename DTAQCL from APISRC in RPGISCOOL
* RPG program DTAQCL, sends message to FIFO data queue,
* receives message from KEYED data queue
**
*
* Include prototypes 1
D/Copy RPGISCOOL/APISRC,DTAQPROTO
*
* Program variable definitions
D Length S 5P 0
D DataRcv S 40A
D Sender S 44A
*
D DataSnd C 'Hello Server, how are you today?'
D WaitTime C 5
*
* Program status data structure to get job number 2
D ProgStat SDS
D JobNum 264 269A
*---
*
* Sends message to server 3
C CallP SndDtaQ('DTAQFIFO' : 'RPGISCOOL'
C : %Len(%Trim(DataSnd)) : DataSnd)
*
* Receives answer from server using JobNum as the key 4
C CallP RcvDtaQ('DTAQKEYED' : 'RPGISCOOL'
C : Length : DataRcv : WaitTime
C : 'EQ' : %Size(JobNum) : JobNum
C : *zero : Sender)
*
* Displays received data
C If DataRcv <> *blanks
C DataRcv Dsply
C EndIf
*
C Eval *InLR = *On

DTAQCL program notes
1 Copy prototype definitions from member DTAQPROTO. The prototype

member is defined in 5.2.2.6, “RPG IV prototype for data queue APIs” on page
148.

2 The job number is extracted from the program status data structure.

3 Calling QSNDDTAQ API. The parameters expected by the API are defined in
the prototype copy member. On this call, the optional parameters related to
keyed Dtaq are not used (feature of the Options(*Nopass) keyword on the
prototype definition).

4 Calling QRCVDTAQ API. The parameters expected by the API are defined in
the prototype copy member. The Wait parameter specifies 5 seconds to wait
for an answer. The key order is equal, and the job number is used as a key.
The sender length is initialized to zero because the sender information is not
used.

5.2.3.3 Source code for program DTAQSR
The server program DTAQSR receives this message from the data queue
DTAQFIFO, extracts the job number from sender information, and sends the
151

response back to the data queue DTAQKEYED with a key equal to the job
number of client program.

**
* Filename DTAQSR from APISRC in RPGISCOOL
* RPG program DTAQSR, receives message from FIFO data queue,
* sends message to KEYED data queue
**
*
*---
* The information contained in this document has not been submitted
* to any formal IBM test and is distributed AS IS. The use of this
* information or the implementation of any of these techniques is a
* customer responsibility and depends on the customer's ability to
* evaluate and integrate them into the customer's operational
* environment. See Special Notices in redbook SG24-5402 for more.
*
* Include prototypes 1
D/Copy RPGISCOOL/APISRC,DTAQPROTO
*
* Program variable definitions
D Length S 5P 0
D Data S 40A
D KeyBuf S 6A
D Sender S 44A
*
D WaitTime C -1
*---
*
* Receives message from client 2
C CallP RcvDtaQ('DTAQFIFO' : 'RPGISCOOL'
C : Length : Data : WaitTime
C : *blank : *zero : KeyBuf
C : %Size(Sender) : Sender)
*
* Sends answer to client 3
C Eval Data = 'Hello Client '
C + %Subst(Sender : 29 : 6)
C + ', thanks for calling'
*
C CallP SndDtaQ('DTAQKEYED' : 'RPGISCOOL'
C : %Len(%Trim(Data)) : Data
C : 6 : %Subst(Sender : 29 : 6))
*
C Eval *InLR = *On

DTAQSR program notes
1 Copy prototype definitions from member DTAQPROTO. The prototype

member is defined in 5.2.2.6, “RPG IV prototype for data queue APIs” on page
148.

2 Calling QRCVDTAQ API. The parameters expected by the API are defined in
the prototype copy member. The Wait parameter specifies a negative value,
which means unlimited wait. The key length is initialized to 0 because key is
not used. The sender information is required, and the sender length must be
greater than 8.

3 Preparing data and calling QSNDDTAQ API. The parameters expected by the
API are defined in the prototype copy member. The job number is extracted
from the sender information and is used as a key.
152 Who Knew You Could Do That with RPG IV?

5.3 User space APIs

User spaces are objects that can be used to contain a stream of user-defined
data. They are permanent objects that are located in either the system domain or
the user domain. They have an object type of *USRSPC and a maximum size of
16 MB. You can save and restore user spaces to other systems. However, if the
user spaces contain pointers, you cannot restore the pointers even if you want to
restore them to the same system.

System value QALWUSRDMN specifies the libraries that can contain
user-domain user spaces, either *ALL to allow them in all libraries or a list of up to
50 libraries, which must include QTEMP. This system value is only important
when running level 40 or 50 security.

If the allow user domain (QALWUSRDMN) system value contains only the
QTEMP library, you can only use the user space through APIs unless the user
space is in QTEMP.

User spaces can be used for the following purposes:

• Store large amounts of data. You can create a user space as large as 16 MB,
while data areas are limited to 2000 bytes.

• Save information in user space object, and save and restore the object with
the information in it using CL commands.

You can try this example by compiling the code from this section on your
AS/400 system. Use the following command to create the programs:

CRTBNDRPG PGM(RPGISCOOL/DTAQCL) SRCFILE(RPGISCOOL/APISRC)
CRTBNDRPG PGM(RPGISCOOL/DTAQSR) SRCFILE(RPGISCOOL/APISRC)

Create two data queues using the following commands:

CRTDTAQ DTAQ(RPGISCOOL/DTAQFIFO) MAXLEN(40) SENDERID(*YES)
CRTDTAQ DTAQ(RPGISCOOL/DTAQKEYED) MAXLEN(40) SEQ(*KEYED) KEYLEN(6)
SENDERID(*NO)

To run the programs, use the following commands:

SBMJOB CMD(CALL PGM(RPGISCOOL/DTAQSR))
CALL PGM(RPGISCOOL/DTAQCL)

The following answer appears on your screen:

Hello Client 075608, thanks for calling

Try it yourself

All objects are assigned a domain attribute when they are created. A domain is
a characteristic of an object that controls how programs can access the object.
Once set, the domain remains in effect for the life of the object. For more
information about the differences between the user and system domains, see
AS/400 Advanced Series System API Programming, SC41-5800.

User or system domain?
153

• Pass data from job to job or from system to system.

• List APIs require user spaces to generate their output data.

• Store pointers.

5.3.1 List of user space APIs
The access to user spaces is possible through the group of APIs, which can be
used from any high-level language program, including RPG IV. The following
sections detail the user space APIs and how to use them.

5.3.1.1 Create User Space (QUSCRTUS) API
The Create User Space (QUSCRTUS) API creates a user space in either the user
domain or the system domain. A system-domain user space cannot be saved to a
release prior to Version 2 Release 3 Modification 0. A user-domain user space
can be directly manipulated with machine interface (MI) instructions or can be
accessed by using system APIs.

On systems with a QSECURITY system value of 40 or greater, applications can
only access system-domain user spaces using APIs.

The user space objects that you create are larger than or equal to the size
specified. They have a fixed length and can be extended or truncated using the
Change User Space Attributes (QUSCUSAT) API.

For performance reasons, the *USRSPC object is created before checking to see
if it already exists in the specified library. If you have an application using this API
repeatedly, even if you are using *NO for the replace parameter, permanent
system addresses are used.

This API has required and optional parameters. Table 22 shows the required
parameters.

Table 22. Required parameter group for QUSCRTUS

Qualified user space name contains the user space name in the first 10
characters, and the name of the library where the user space is located in the
second 10 characters. The only special value supported for the library name is
*CURLIB.

User spaces created in the QTEMP and QRPLOBJ libraries are not forced to
permanent storage. They are deleted when those libraries are cleared at sign-off
and system IPL, respectively.

Number Description Use Data type

1 Qualified user space name Input Char(20)

2 Extended attribute Input Char(10)

3 Initial size Input Integer(10)

4 Initial value Input Char(1)

5 Public authority Input Char(10)

6 Text description Input Char(50)
154 Who Knew You Could Do That with RPG IV?

The extended attribute must be a valid *NAME. You can enter this parameter in
uppercase, lowercase, or mixed case. The API converts it to uppercase.

The initial size of the user space being created is the value between 1 byte to
16,776,704 bytes.

You will achieve the best performance if you set the initial value byte to X'00'.

Public authority is the authority given to users who do not have specific private or
group authority to the user space. Once the user space has been created, its
public authority stays the same when it is moved to another library or restored
from backup media.

Table 23. Optional parameter group 1 for QUSCRTUS

An existing user space can be replaced. Valid values are *YES or *NO. If the user
space already exists, it is replaced by a new user space of the same name and
library, and is subject to the same authorities.

Error code defines the structure in which to return error information. For the
format of the structure, see “Error code parameter” on page 143.

Table 24. Optional parameter group 2 for QUSCRTUS

The user space can be created either in the system or user domain. If this
parameter is not specified, the value of *DEFAULT is assumed by the API. Valid
values for this parameter are:

*DEFAULT Allows the system to decide into which domain the object should
be created.

*SYSTEM Creates the user space object into the system domain. The API can
always create a user space into the system domain regardless of
the security level in effect. However, you must use APIs to access
system-domain user spaces if you are running at security level 40
or greater.

*USER Attempts to create the user space object into the user domain. This
is not always possible. If the library into which you are creating the
user space does not appear in the QALWUSRDMN system value,
the API cannot create the user space into the user domain. An
error is returned.

5.3.1.2 Delete User Space (QUSDLTUS) API
The Delete User Space (QUSDLTUS) API deletes user spaces created with the
Create User Space (QUSCRTUS) API. The QUSDLTUS API performs the same
function as the Delete User Space (DLTUSRSPC) command.

Number Description Use Data type

7 Replace Input Char(10)

8 Error code I/O Char(*)

Number Description Use Data type

9 Domain Input Char(10)
155

All parameters for this API are required. See Table 25.

Table 25. Required parameter group for QUSDLTUS

The Qualified user space name parameter is described in Table 22 on page 154.
The Error code parameter is described in “Error code parameter” on page 143.

5.3.1.3 Retrieve Pointer to User Space (QUSPTRUS) API
The Retrieve Pointer to User Space (QUSPTRUS) API retrieves a pointer to the
contents of a user-domain user space. The data in that user space then can be
directly manipulated by high-level language programs that support pointers, such
as RPG IV. The QUSPTRUS API will not return a pointer to a system-domain user
space. You must use system APIs to access system-domain user spaces.

This API has required and optional parameters, which are shown in Table 26.

Table 26. Required parameter group for QUSPTRUS

QUSPTRUS API returns the pointer to the user space in the variable defined as
the pointer.

Table 27. Optional parameter for QUSPTRUS

5.3.1.4 Retrieve User Space (QUSRTVUS) API
The Retrieve User Space (QUSRTVUS) API allows you to retrieve the contents of
a user space. The QUSRTVUS API does not retrieve descriptive information
about the user space object, such as its size. To retrieve information about the
attributes of a user space, use QUSRUSAT API.

This API has required and optional parameters, which are shown in Table 28.

Table 28. Required parameter group for QUSRTVUS

Number Description Use Data type

1 Qualified user space name Input Char(20)

2 Error code I/O Char(*)

Number Description Use Data type

1 Qualified user space name Input Char(20)

2 Return pointer Output Pointer

Number Description Use Data type

3 Error code I/O Char(*)

Number Description Use Data type

1 Qualified user space name Input Char(20)

2 Starting position Input Integer(10)

3 Length of data Input Integer(10)

4 Receiver variable Output Char(*)
156 Who Knew You Could Do That with RPG IV?

Data from the user space at the starting position, in the length defined by the
Length parameter, is moved to the receiver variable.

Table 29. Optional parameter for QUSRTVUS

5.3.1.5 Change User Space (QUSCHGUS) API
The Change User Space (QUSCHGUS) API changes the contents of the user
space (*USRSPC) object by moving a specified amount of data to the object. This
API allows you to change the contents of a user space if you are using either:

• A language that does not support pointers
• System-domain user spaces

This API has required and optional parameters, which are shown in Table 30.

Table 30. Required parameter group for QUSCHGUS

The input data in the length defined by the Length parameter are placed into the
user space from the starting position.

The valid values for forcing changes to auxiliary storage are:

0 Does not force changes.
1 Forces changes asynchronously.
2 Forces changes synchronously.

Table 31. Optional parameter for QUSCHGUS

Error code is explained in “Error code parameter” on page 143.

5.3.1.6 Retrieve User Space Attributes (QUSRUSAT) API
The Retrieve User Space Attributes (QUSRUSAT) API retrieves information
about the current attributes and the current operational statistics of the user
space.

All parameters for this API are required. They are shown in Table 32 on page 158.

Number Description Use Data type

5 Error code I/O Char(*)

Number Description Use Data type

1 Qualified user space name Input Char(20)

2 Starting position Input Integer(10)

3 Length of data Input Integer(10)

4 Input data Input Char(*)

5 Force changes to auxiliary storage Input Char(1)

Number Description Use Data type

6 Error code I/O Char(*)
157

Table 32. Required parameter group for QUSRUSAT

The receiver variable receives the requested information in the format defined by
format name parameter. The valid format name for this API is SPCA0100.

SPCA0100 format
Table 33 shows the information about a user space returned for the format
SPCA0100.

Table 33. SPCA0100 format

The size of the user space object is returned in bytes.

Automatic extendibility specifies whether the space is extended automatically by
the system when the end of the space is encountered:

0 Space is not automatically extendible.
1 Space is automatically extendible.

The initial value defines the character to which future extensions of the user
space will be set.

5.3.1.7 Change User Space Attributes (QUSCUSAT) API
The Change User Space Attributes (QUSCUSAT) API changes the attributes of a
user space object. This API can be used to:

• Extend or truncate a user space
• Mark or unmark the user space as automatically extendible by the system
• Change the initial value to which future extensions of the user space will be

set

All parameters for this API are required. They are shown in Table 34.

Number Description Use Data type

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Integer(10)

3 Format name Input Char(8)

4 Qualified user space name Input Char(20)

5 Error code I/O Char(*)

From To Description Type

1 4 Bytes returned Integer(10)

5 8 Bytes available Integer(10)

9 12 Space size Integer(10)

13 13 Automatic extendibility Char(1)

14 14 Initial value Char(1)

15 24 User space library name Char(10)
158 Who Knew You Could Do That with RPG IV?

Table 34. Required parameter group for QUSCUSAT

If the user space attributes are successfully changed, the name of the library in
which the user space was found is returned in the first parameter.

The attributes of the user space object that you want to change are written in a
special variable format. For more information, refer to the System API Reference,
SC41-5865.

5.3.2 Programming directly with user space APIs
The following code snippet illustrates the implementation of the two most often
used user space APIs: Create User Space (QUSCRTUS) and Retrieve Pointer to
User Space (QUSPTRUS):

* Prototype for API QUSCRTUS - Create user space
D CrtUsrSpc PR EXTPGM('QUSCRTUS')
D QualUserSpc 20A
D ExtAttr 10A
D InitSize 10I 0
D InitValue 1A
D PubAuth 10A
D Text 50A
D Replace 10A
D Error 256A
D Domain 10A
*
* Prototype for API QUSPTRUS - Retrieve pointer
D RtvPtr PR EXTPGM('QUSPTRUS')
D QualUserSpc 20A
D Pointer *
D Error 256A
*
* Program variable definitions
D QualUserSpc S 20A Inz('PARTS *CURLIB ')
D ExtAttr S 10A Inz(*BLANKS)
D InitSize S 10I 0 Inz(8192)
D InitValue S 1A Inz(*BLANK)
D PubAuth S 10A Inz('*USE')
D Text S 50A Inz('User space example')
D Replace S 10A Inz('*YES')
D Error S 256A
D Domain S 10A Inz('*USER')
D Pointer S *
*---
*
* Create user space calling QUSCRTUS
C CallP CrtUsrSpc(QualUserSpc:ExtAttr:InitSize:
C InitValue:PubAuth:Text:Replace:Error:
C Domain)
*
* Retrieve pointer calling QUSPTRUS
C CallP RtvPtr(QualUserSpc:Pointer:Error)

First, we define the prototypes for both APIs, so that we can call them using the
CALLP operation. We also define program variables and their initial values.

Then we invoke the API Create User Space (QUSCRTUS) to create the user
space named PARTS in current library. The size of this space is 8192 bytes, and

Number Description Use Data type

1 Returned library name Output Char(10)

2 Qualified user space name Input Char(20)

3 Attributes to change Input Char(*)

4 Error code I/O Char(*)
159

it is initially filled with blanks. Public authority for this object is *USE. If such an
object already exists, it is replaced.

Finally, we call API Retrieve Pointer to User Space (QUSPTRUS), which returns
the pointer to the created user space. Using this pointer, we can access the user
space and either store or retrieve data from it.

5.3.3 Simplifying user space APIs programming with wrappers
In the previous example, we saw that user space APIs can have a lot of
parameters, especially the QUSCRTUS API used to create the user space. If
these APIs are used often, the programmer can simplify the API use. They can
create their own procedures to mask the complexity of system API parameters.
This is called wrappering.

The benefits of using these procedures rather than coding to the APIs directly
are:

• Only one person has to understand the complexities of the APIs. Everyone
else in the shop can use a simpler interface. They do not have to worry about
the mechanics of the process.

• Parameters can be re-sequenced to more closely match the way in which
programmer would use the APIs.

• Provide standardized error handling routines.

These procedures are usually placed in a separate module, which must be bound
with the module that uses them. It is also possible to include these procedures
into a service program, which is then bound to other modules.

5.3.3.1 Source code for prototypes SPACEPROTO
Source member SPACEPROTO contains prototypes for calling the user space
APIs QUSCRTUS and QUSPTRUS, and prototypes for calling the wrapper
procedures CreateSpace, GetSpacePtr, and CheckPart:

* Filename SPACEPROTO from APISRC in RPGISCOOL
* Prototype for QUSCRTUS API
D QUSCrtUS Pr Extpgm('QUSCRTUS') 1
D QualObjName 20A Const
D ExtAttr 10A Const
D InitSize 10U 0 Const
D InitVal 1A Const
D Authority 10A Const
D Text 50A Const
D Replace 10A Const
D ErrorCode 272A
D Domain 10A Const

* Prototype for QUSPTRUS API 2
D QUSPtrUS Pr Extpgm('QUSPTRUS')
D QualObjName 20A Const
D SpacePtr *
D ErrorData 272A

* Prototype for CreateSpace procedure
* First parameter is the space name, all others are optional
D CreateSpace Pr N 3
D SpaceName 10A Value
D LibraryName 10A Value Options(*NoPass)
D InitSize 10U 0 Value Options(*NoPass)
D Text 50 Value Options(*NoPass)
D Replace 10 Value Options(*NoPass)
D ExtAttr 10 Value Options(*NoPass)
D InitVal 1 Value Options(*NoPass)
D Authority 10 Value Options(*NoPass)
160 Who Knew You Could Do That with RPG IV?

D Domain 10 Value Options(*NoPass)

* Prototype for GetSpacePtr procedure
* First parameter is space name, second (optional) is library name
D GetSpacePtr Pr * 4
D SpaceName 10A Const
D LibraryName 10A Const Options(*NoPass)

* Prototype for CheckPart procedure used in Parts search
D CheckPart Pr 10I 0 5
D SearchKey@ * Value
D Candidate@ * Value

SPACEPROTO program notes
1 Prototype for calling API QUSCRTUS with nine parameters.

2 Prototype for calling API QUSPTRUS with three parameters.

3 Prototype for the procedure CreateSpace, which returns an indicator variable
to inform the caller about the success of the requested function. Only the first
parameter SpaceName is mandatory. All others are optional and provided by
the procedure. All parameters following the first optional parameter must also
have OPTIONS(*NOPASS) specified.

4 Prototype for procedure GetSpacePtr, which returns a pointer variable. It has
two parameters: SpaceName and LibraryName. The first parameter is
mandatory, and the second, defined with keyword Options(*NoPass), is
optional. The parameter defined with CONST cannot be modified by the called
program or procedure.

5 Prototype for CheckPart procedure defined inside the program SHOWPARTS.

5.3.3.2 Example of masking procedures with SPACEPROCS
This section provides the source code for the program SPACEPROCS, which
illustrates how these masking procedures can be created. Our example shows a
module with two procedures for calling the two most used user space APIs.

The procedure CreateSpace acts as a wrapper for the system API Create User
Space (QUSCRTUS). The procedure GetSpacePtr acts as a wrapper for the
system API Retrieve Pointer to User Space (QUSPTRUS).

This module must be compiled (PDM option 15) and bound later with application
programs that use the procedures:

* Filename SPACEPROCS from APISRC in RPGISCOOL
H NoMain 1

* Include prototypes
D/Copy RPGISCOOL/APISRC,SPACEPROTO 2

* Following fields may be used in multiple procedures
D Authority S 10
D Domain S 10
D ErrorMsg S 36A Inz
D ExtAttr S 10
D InitSize S 10U 0
D InitVal S 1
D LibraryName S 10A
D Replace S 10
D QualObjName S 20A
D SpaceName S 10A
D Text S 50
D Wait S 1A

* This DS is used by the QUS... APIs to return error information
* It is Exported to allow user procs to handle errors if they wish
D ErrorInfo DS Export 3
D BytesAvail 10U 0 Inz(%Size(ErrorInfo))
161

D BytesUsed 10U 0
D ExceptionId 7A
D 1A
D ExceptionData...
D 256A

* Default values for parameters that can be omitted
D DftLibName C '*CURLIB' 4
D DftInitSize C 32000
D DftExtAttr C *Blanks
D DftInitVal C X'00'
D DftAuthority C '*USE'
D DftText C *Blanks
D DftReplace C '*NO'
D DftDomain C '*DEFAULT'

******************* Start of procedures

* Procedure GetSpacePtr - returns pointer to an existing user space
* returns null pointer on error (not found)
P GetSpacePtr B Export 5
D GetSpacePtr PI *
D SpaceName 10A Const
D LibraryName 10A Const Options(*NoPass)

D UserSpacePtr S *

* Use default value for Library name if not supplied
C If %Parms < 2 7
C Eval QualObjName = SpaceName + DftLibName
C Else
C Eval QualObjName = SpaceName + LibraryName
C EndIf

C CallP QUSPtrUS(QualObjName:UserSpacePtr:
C ErrorInfo)

* Check for error and report
C If BytesUsed > 0 8
C Eval ErrorMsg = 'QUSPTRUS returned error ' +
C ExceptionId
C ErrorMsg Dsply Wait
C Return *Null
C Else
C Return UserSpacePtr
C EndIf
P GetSpacePtr E

* Procedure CreateSpace - returns an indicator which is on if the
* returns null pointer on error (not found)

P CreateSpace B Export 6
D PI N
D PSpaceName 10A Value
D PLibraryName 10A Value Options(*NoPass)
D PInitSize 10U 0 Value Options(*NoPass)
D PText 50 Value Options(*NoPass)
D PReplace 10 Value Options(*NoPass)
D PExtAttr 10 Value Options(*NoPass)
D PInitVal 1 Value Options(*NoPass)
D PAuthority 10 Value Options(*NoPass)
D PDomain 10 Value Options(*NoPass)

* Use default values for any optional parameters that were not passed
C If %Parms < 2 7
C Eval QualObjName = PSpaceName + DftLibName
C Else
C Eval QualOBjName = PSpaceName + PLibraryName
C EndIf

C If %Parms < 3
C Eval InitSize = DftInitSize
C Else
C Eval InitSize = PInitSize
C EndIf

C If %Parms < 4
C Eval Text = DftText
C Else
162 Who Knew You Could Do That with RPG IV?

C Eval Text = PText
C EndIf

C If %Parms < 5
C Eval Replace = DftReplace
C Else
C Eval Replace = PReplace
C EndIf

C If %Parms < 6
C Eval ExtAttr = DftExtAttr
C Else
C Eval ExtAttr = PExtAttr
C EndIf

C If %Parms < 7
C Eval InitVal = DftInitVal
C Else
C Eval InitVal = PInitVal
C EndIf

C If %Parms < 8
C Eval Authority = DftAuthority
C Else
C Eval Authority = PAuthority
C EndIf

C If %Parms < 9
C Eval Domain = DftDomain
C Else
C Eval Domain = PDomain
C EndIf

C CallP QUSCRTUS(QualObjName:ExtAttr:InitSize:
C InitVal:Authority:Text:
C Replace:ErrorInfo:Domain)

* Check for error and report
C If BytesUsed > 0 8
C Eval ErrorMsg = 'QUSCRTUS returned error ' +
C ExceptionId
C ErrorMsg Dsply Wait
C Return *Off
C Else
C Return *On
C EndIf
P CreateSpace E

SPACEPROCS program notes
ı Keyword NOMAIN on H specifications specifies that the cycle code is not

generated for this module. In our case, we recommend this because it reduces
the size of the program.

2 Copy prototype definitions from member SPACEPROTO.

3 This data structure is used by user space APIs to return error information. The
keyword EXPORT allows user procedures to handle errors if they want.

4 These constants contain default values for optional parameters.

5 The beginning and procedure interface for the procedure GetSpacePtr. The
keyword EXPORT allows the use of the procedure outside of this module.

6 The beginning and procedure interface for the procedure CreateSpace. The
keyword EXPORT allows the use of the procedure outside of this module.

7 If optional parameters are not defined, provide default values and call the API.

8 Check for an error and display error message. Otherwise, return the requested
value.
163

5.3.4 A user space example
Once procedures are prepared, we can use them in application programs. In our
example, we use three simple programs designed to demonstrate the use of user
spaces as an alternative to a database for table-type lookups. We do not have
any performance data. A reduced number of I/O operations alone should be of
significant benefit, particularly during batch operations which tend to be I/O
constrained. Figure 23 shows the logic of our small application.

Figure 23. Programs used in the user space example

Note these points in regard to Figure 23:

• The program CRTPARTS creates a user space PARTS in the current library. If
this object already exists, the program returns an error message.

• The program LOADPARTS reads records from database file PARTS and loads
them into previously created user space PARTS.

• The program SHOWPARTS uses the display file PARTDISP as an interface
with the end user. It looks for a requested part in the user space PARTS, and if
found, it displays data. Otherwise, it sends an error message.

5.3.4.1 Source code for the program CRTPARTS
This program is used only once to create the user space. Once created, the user
space remains in the library as a permanent object. It can be deleted any time by
using the CL command DLTUSRSPC, or eventually by using a similar program
that calls API QUSDLTUS (delete user space).

The source program must be compiled into a module, and then bound with the
module SPACEPROCS to create an executable program. To achieve this, use the
following commands:

• CRTRPGMOD MODULE(CRTPARTS)

• CRTPGM PGM(CRTPARTS) MODULE(CRTPARTS SPACEPROCS)

Program

CRTPARTS

Program

LOADPARTS

Program

SHOWPARTS

User Space

PARTS

DB file

PARTS

Display File

PARTDISP
164 Who Knew You Could Do That with RPG IV?

The source code for the program CRTPARTS is shown here:

* Filename CRTPARTS from APISRC in RPGISCOOL

* Include prototypes
D/Copy RPGISCOOL/APISRC,SPACEPROTO 1
*
D SpaceName S 10A Inz('PARTS')
D ErrorMsg C 'User Space PARTS already exists'

C If Not CreateSpace(SpaceName) 2
C ErrorMsg Dsply
C EndIf

C Eval *InLr = *ON

CRTPARTS program notes
1 Copy prototype definitions from member SPACEPROTO.

2 Procedure CreateSpace returns an indicator as a return value. If the function
is successfully completed, the returned indicator is *On. We can call the
procedure and check the returned value with the IF operation.

5.3.4.2 Source code for the program LOADPARTS
This program can be called to load all records from the database file PARTS into
the user space. Each time the file content is changed. Once loaded, the user
space can be used by any application program instead of opening and reading
the PARTS file. The result should be better performance because access to the
user space is faster than access to the database files.

The source program must be compiled into a module, and then bound with the
module SPACEPROCS to create an executable program. To achieve this, use the
following commands:

• CRTRPGMOD MODULE(LOADPARTS)

• CRTPGM PGM(LOADPARTS) MODULE(LOADPARTS SPACEPROCS)

The source code for program LOADPARTS follows:

* Filename LOADPARTS from APISRC in RPGISCOOL
FParts IF E K Disk

* Include prototypes
D/Copy RPGISCOOL/APISRC,SPACEPROTO 1

D PartRecord E DS ExtName(Parts)

D PartEntry S Based(PartPtr) Like(PartRecord) 2

D Library S 10A Inz('*CURLIB')
D SpaceName S 10A Inz('PARTS')

* BasePtr will hold the base address of the User Space PARTS
* At the beginning of the space is a count (Count) of the entries
D BasePtr S * 3
D Count S 5P 0 Based(BasePtr)
D CountMessage S 30A
D SpaceNotFound C 'User Space PARTS not found'

C Eval BasePtr=GetSpacePtr(SpaceName:Library) 4

C If BasePtr <> *Null 5

C Eval PartPtr = BasePtr + %Size(Count)
C Eval Count = 0

C Dow Not %Eof(Parts)

C Read Parts 6
C If Not %Eof(Parts)
165

C Eval Count = Count + 1
C Eval PartEntry = PartRecord
C Eval PartPtr = PartPtr + %Size(PartRecord)
C EndIf

C EndDo

C Eval CountMessage = %EditC(Count:'Z') 7
C + ' Records loaded'
C CountMessage Dsply

C Else

* Space was not found - inform user
C SpaceNotFound Dsply
C EndIf

C Eval *InLr = *ON

LOADPARTS program notes
1 Copy prototype definitions from the member SPACEPROTO.

2 The PartEntry variable is based on pointer PartPtr and has the same definition
as a PartRecord data structure. It is used to load records from the PARTS file
into the user space.

3 Another pointer, BasePtr, is used to hold the base address of the user space
PARTS. At the beginning of the space is a variable Count, based on pointer
BasePtr, which contains the number of loaded entries.

4 Procedure GetSpacePtr loads the pointer BasePtr with the address of the
requested user space.

5 If BasePtr contains valid value (not *Null), we load also the pointer PartPtr,
which is used to load part records into the user space.

6 In the DoW loop, we read all records from the PARTS file and load them into
the user space. The PartEntry field is based on the PartPtr pointer, which is
increased each time for the length of one part record, and always points to the
next free entry.

7 At the end, a count message is prepared to inform a user about the number of
loaded records into user space.

Physical file PARTS
The physical file PARTS is required by the program LOADPARTS. Here is the
definition of the file:

A**
A* PARTS from DBSRC in RPGISCOOL
A**
A UNIQUE
A R PARTR
A PARTNUM 5S 0 COLHDG('Part Number')
A PARTDES 25 COLHDG('Part Description')
A PARTQTY 5P 0 COLHDG('Part Quantity')
A PARTPRC 6P 2 COLHDG('Part Price')
A PARTDAT L COLHDG('Shipment Date')
A DATFMT(*ISO)
A K PARTNUM

To recreate our sample test execution, you can load the following data in the file
PARTS:

Part Number Part Description Part Quantity Part Price Shipment
12345 Hammer 123 29.99 1999-05-01
23456 Saw 234 20.99 1999-04-01
34567 Hatchet 345 19.99 1999-03-01
45678 Rasp 456 9.99 1999-02-01
166 Who Knew You Could Do That with RPG IV?

5.3.4.3 Source code for the SHOWPARTS program
This program uses the user space PARTS loaded by the LOADPARTS program to
perform the parts lookup. It gets a part number from the display file, looks for a
part record in the user space, and if found, displays the parts data on the screen.
To perform the actual lookup process, the program uses the C library routine
bsearch(). You can see the prototype for bsearch() in “SHOWPARTS program
notes” on page 168.

To create an executable program, the source program must be first compiled into
a module. Then, it must be bound with the SPACEPROCS module and the
QC2UTIL1 service program, which contains the C function bsearch. To achieve
this, use the following commands:

• CRTRPGMOD MODULE(SHOWPARTS)

• CRTPGM PGM(SHOWPARTS) MODULE(SHOWPARTS SPACEPROCS) BNDSRVPGM(QC2UTIL1)

You can also use the binding directory QC2LE instead of the service program
directly (BNDDIR(QC2LE)).

The source code for program SHOWPARTS follows:

* Filename SHOWPARTS from APISRC in RPGISCOOL
FPartDisp CF E WorkStn IndDs(DispInd)

* Include prototypes
D/Copy RPGISCOOL/APISRC,SPACEPROTO 1
D/Copy RPGISCOOL/APISRC,C_Protos 2

D DispInd DS 3
D Exit 3 3N
D FoundMatch 50 50N

D PartRecord E DS ExtName(Parts) Based(PartPtr) 4
D DummyPart E DS ExtName(Parts) Inz Prefix(D_)

* BasePtr will hold the base address of the User Space PARTS
* At the beginning of the space is a count (Count) of the entries
D PartSpace DS Based(BasePtr) 5
D Count 5P 0
D PartData Like(PartRecord) Dim(20)

D Library S 10A Inz('*CURLIB')
D SpaceName S 10A Inz('PARTS')
D True C *On
D False C *Off

C Eval BasePtr=GetSpacePtr(SpaceName:Library) 6

* If no space found error message is already sent, so set for Exit
C If BasePtr = *Null
C Eval Exit = True
C EndIf

* This statement loads pointer required to display DispRec
C Eval PartPtr = %Addr(DummyPart) 7

C DoU Exit = True

C ExFmt DispRec
C If Exit
C Iter
C Endif

C Eval PartPtr=FindIt(%Addr(I_PartNum): 8
C %Addr(PartData):Count:
C %Len(PartRecord):
C %PAddr('CHECKPART'))

C If PartPtr <> *Null
C Eval FoundMatch = True
C Else
167

C Eval FoundMatch = False
C Eval PartPtr = %Addr(DummyPart) 9
C EndIf

C EndDo

C Eval *InLR = True

* Procedure CheckPart - used by search to determine key match
P CheckPart B Export 10
D CheckPart PI 10I 0
D SearchKey@ * Value
D Candidate@ * Value

D SearchKey S Based(SearchKey@) Like(I_PartNum)
D Candidate E DS Based(Candidate@) ExtName(Parts)

* The routine compares two elements passed and returns Low/High/Equal
C If SearchKey < PartNum
C Return Low
C Else
C If SearchKey > PartNum
C Return High
C Else
C Return Equal
C EndIf
C EndIf
P E

SHOWPARTS program notes
1 Copy prototype definitions from the member SPACEPROTO.

2 In this program, we use the procedure FindIt, which invokes the C function
bsearch. The Copy statement is needed to include the prototype for the
procedure FindIt from the member C_PROTOS from APISRC in RPGISCOOL.
As a result, the following code is copied:

D FindIt PR * ExtProc('bsearch')
D LookFor * Value
D DataStart * Value
D Elements 10U 0 Value
D Size 10U 0 Value
D CompFunc * ProcPtr Value

3 Indicator data structure for the display file.

4 PartRecord is a data structure based on the pointer PartPtr, which contains the
found record. DummyPart is a dummy data structure used only to initialize the
PartPtr either before the first use or in the case when part is not found and
procedure FindIt returns a null pointer.

5 PartSpace is a data structure based on pointer BasePtr, which maps the
content of the user space. PartData is an array with 20 elements used in the
search procedure FindIt.

6 Procedure GetSpacePtr loads the pointer BasePtr with the address of the user
space PARTS.

7 PartPtr pointer must be initialized before the display file record can be
displayed.

8 Procedure FindIt invokes the C function bsearch and transfers to it the
address of the search argument field (I_PartNum), address of the PartData
array containing all part records, the number of available records, the record
size, and the address of the procedure CheckPart used for key comparison.

9 If the parts lookup was successful, pointer PartPtr is loaded with a valid value.
Otherwise, we have to initialize it using a dummy data structure.
168 Who Knew You Could Do That with RPG IV?

10 The CheckPart procedure is used by the search function FindIt to determine
the key match. The procedure compares two elements passed as pointers and
returns an integer value for low (-1), high (1), or equal (0). These integer
values are defined in the copy member C_PROTOS.

Display file PARTDISP
Here is the definition of the display file PARTDISP, which is required when
compiling program SHOWPARTS:

A DSPSIZ(24 80 *DS3)
A REF(RPGISCOOL/PARTS PARTR)
A INDARA CF03(03)
A R DISPREC
A 1 2DATE
A EDTCDE(Y)
A 1 14TIME
A 1 61USER
A 1 73SYSNAME
A 4 26'Test Parts Table Lookup'
A 7 23'Part Number: . . .'
A I_PARTNUM R B 7 42REFFLD(PARTNUM)
A 50 PARTNUM R O 7 49REFFLD(PARTNUM)
A 50 9 23'Part Name:'
A 50 PARTDES R O 9 42REFFLD(PARTDES)
A 50 11 23'Part Quantity: . .'
A 50 PARTQTY R O 11 42REFFLD(PARTQTY)
A 50 13 23'Part Price: . . .'
A 50 PARTPRC R O 13 42REFFLD(PARTPRC)
A 50 15 23'Shipping Date: . .'
A 50 PARTDAT R O 15 42REFFLD(PARTDAT)
*
A N50 21 23'No entry found for requested Part'
A DSPATR(HI)
A DSPATR(BL)
A 50 22 23'Requested Part found '
A DSPATR(BL)
A DSPATR(HI)
A 24 2'F3=Exit'
169

5.4 Message handling APIs

On the AS/400 system, communication between procedures or programs,
between jobs, between users, and between users and procedures or programs
occurs through messages. A message can be predefined or immediate:

Predefined message
Created and exists outside the program that uses it. They are stored in
message files uniquely identified by a seven-character code and are
defined by a message description.

Immediate message
Created by the sender at the time it is sent, and is not stored in a
message file.

You can try this example by compiling the code from this section on your
AS/400 system. Use the following commands to create the modules. The
physical file PARTS and display file PARTDISP must be created prior to
creating the modules.

CRTPF FILE(RPGISCOOL/PARTS) SRCFILE(RPGISCOOL/DBSRC)
CRTDSPF FILE(RPGISCOOL/PARTDISP) SRCFILE(RPGISCOOL/APISRC)

CRTRPGMOD MODULE(RPGISCOOL/SPACEPROCS) SRCFILE(RPGISCOOL/APISRC)
CRTRPGMOD MODULE(RPGISCOOL/CRTPARTS) SRCFILE(RPGISCOOL/APISRC)
CRTRPGMOD MODULE(RPGISCOOL/LOADPARTS) SRCFILE(RPGISCOOL/APISRC)
CRTRPGMOD MODULE(RPGISCOOL/SHOWPARTS) SRCFILE(RPGISCOOL/APISRC)

Create the programs by using the following commands:

CRTPGM PGM(RPGISCOOL/CRTPARTS) MODULE(RPGISCOOL/CRTPARTS
RPGISCOOL/SPACEPROCS)
CRTPGM PGM(RPGISCOOL/LOADPARTS) MODULE(RPGISCOOL/LOADPARTS
RPGISCOOL/SPACEPROCS)
CRTPGM PGM(RPGISCOOL/SHOWPARTS) MODULE(RPGISCOOL/SHOWPARTS
RPGISCOOL/SPACEPROCS) BNDSRVPGM(QC2UTIL1)

Create the display file by using the following commands:

CRTDSPF FILE(RPGISCOOL/PARTDISP) SRCFILE(RPGISCOOL/APISRC) SRCMBR(PARTDISP)

To run the programs, use the following commands:

CALL PGM(RPGISCOOL/CRTPARTS)
CALL PGM(RPGISCOOL/LOADPARTS)
CALL PGM(RPGISCOOL/SHOWPARTS)

In the display file PARTDISP, you can enter a part number from the list of parts
found in the physical file PARTS (which have been loaded in the user space).
The content is described in “Physical file PARTS” on page 166. For example,
you may enter:

Part Number: . . . 12345

Then, you are shown the part description, as loaded in the user space.

Try it yourself
170 Who Knew You Could Do That with RPG IV?

All messages on the system are sent to a message queue. The system user or
program associated with the message queue receives the message from the
queue. A message queue is automatically supplied for each display station and
each user profile.

Job message queues are supplied for each job running on the system. Each job
is given an external message queue (*EXT). Each call of an OPM program or ILE
procedure within the job has its own call message queue. The external message
queue (*EXT) is used to send messages between an interactive job and the
workstation user.

In addition to these message queues, you can create your own user message
queues for sending messages to system users and between application
programs.

5.4.1 Message types
The OS/400 program divides messages into types according to their use. These
message types are categories based on the message's purpose. The sender of
the message determines its type when sending the message. The message
handling APIs use these message types in defining and working with messages:

• Completion (*COMP)
Reports the successful completion of a task.

• Diagnostic (*DIAG)
Describes errors in processes or input data. When an error occurs, a program
usually sends an escape message, which causes the task to end abnormally.
One or more diagnostic messages can be sent before the escape message to
describe the error.

• Escape (*ESCAPE)
Indicates a condition causing a program to end abnormally, without completing
its work.

• Informational (*INFO)
Conveys information without asking for a reply.

• Inquiry (*INQ)
Conveys information and asks for a reply.

• Notify (*NOTIFY)
Describes a condition in the sending program requiring corrective action or a
reply.

• Reply (*RPY)
Responds to an inquiry or notify message.

• Request (*RQS)
Requests a function from the receiving program.

• Sender's copy (*COPY)
Copy of an inquiry or notify message, kept by the sender of the message.

• Scope (*SCOPE)
Specifies a program to run when the program to which this message is sent
completes.

• Status (*STATUS)
Describes the status of work being done by a program.
171

5.4.2 List of message handling APIs
Message handling APIs let your applications work with AS/400 messages, and
allow you to do the following tasks:

• Send messages to users or programs
• Receive messages from a message queue
• Handle errors
• Return message and message queue information
• Return message description and message file information

The message handling APIs include:

• Change Exception Message (QMHCHGEM)
Changes an exception message (escape or notify) on a call message queue.

• Control Job Log Output (QMHCTLJL)
Controls the production of a job log when the related job ends or when the job
message queue becomes full and the print-wrap option is in effect for the job.

• List Job Log Messages (QMHLJOBL)
Lists messages from the job message queue of a job, and returns it in a user
space in the format specified in the parameter list, as seen in 5.4.2.3, “List Job
Log Messages (QMHLJOBL) API” on page 177.

• List Nonprogram Messages (QMHLSTM)
Lists messages from one or two nonprogram message queues, and returns it
in a user space in the format specified in the parameter list.

• Move Program Messages (QMHMOVPM)
Moves messages from one call message queue to the message queue of an
earlier call stack entry in the call stack.

• Open List of Job Log Messages (QGYOLJBL)
Lists messages from a job log, and returns them sorted by their sending date
and time.

• Open List of Messages (QGYOLMSG)
Provides information on messages for the current user, a specific user, or one
specific nonprogram message queue.

• Promote Message (QMHPRMM)
Promotes an escape or status message that was sent to a call stack entry.

• Receive Nonprogram Message (QMHRCVM)
Receives a message from a nonprogram message queue, providing
information about the sender of the message as well as the message itself.
This function is similar to the Receive Message (RCVMSG) command with the
MSGQ parameter.

• Receive Program Message (QMHRCVPM)
Receives a message from a call message queue, and provides information
about the sender of the message, as well as the message itself. See 5.4.2.2,
“Receive Program Message (QMHRCVPM) API” on page 175. This function is
similar to the Receive Message (RCVMSG) command with the PGMQ
parameter.

• Remove Nonprogram Messages (QMHRMVM)
Removes messages from nonprogram message queues. This function is
similar to the Remove Message (RMVMSG) command with the MSGQ
parameter.
172 Who Knew You Could Do That with RPG IV?

• Remove Program Messages (QMHRMVPM)
Removes messages from call message queues. This function is similar to the
Remove Message (RMVMSG) command with the PGMQ parameter.

• Resend Escape Message (QMHRSNEM)
Resends an escape message from one call message queue to the message
queue of the previous call stack entry in the call stack.

• Retrieve Message (QMHRTVM)
Retrieves the message text and other elements of a predefined message
stored in a message file on your AS/400 system. This function is similar to the
Retrieve Message (RTVMSG) command.

• Retrieve Message File Attributes (QMHRMFAT)
Retrieves information about the attributes of a message file.

• Retrieve Nonprogram Message Queue Attributes (QMHRMQAT)
Provides information about the attributes of a nonprogram message queue.

• Retrieve Request Message (QMHRTVRQ)
Retrieves request messages from the current job's call message queue.

• Send Break Message (QMHSNDBM)
Sends a message to a workstation for immediate display, interrupting the
workstation user's task. This function is similar to the Send Break Message
(SNDBRKMSG) command.

• Send Nonprogram Message (QMHSNDM)
Sends a message to a system user or a message queue that is not associated
with a specific program. This function is similar to the Send Program Message
(SNDPGMMSG) command with the TOMSGQ parameter.

• Send Program Message (QMHSNDPM)
Sends a message to the message queue of a call stack entry in the call stack
as seen in 5.4.2.1, “Send Program Message (QMHSNDPM) API” on page 173.
This function is similar to the Send Program Message (SNDPGMMSG)
command with the TOPGMQ parameter.

• Send Reply Message (QMHSNDRM)
Sends a response to an inquiry message. This function is similar to the Send
Reply (SNDRPY) command.

• Send Scope Message (QMHSNDSM)
Sends a scope message that allows a user to specify a program to run when
your program or job is completed.

Our discussion is limited to only three of these APIs:

• Send Program Message (QMHSNDPM) API
• Receive Program Message (QMHRCVPM) API
• List Job Log Messages (QMHLJOBL) API

For additional information and description of other APIs, refer to System API
Reference: OS/400 Message Handling APIs, SC41-5862.

5.4.2.1 Send Program Message (QMHSNDPM) API
The Send Program Message (QMHSNDPM) API sends a message to a call
message queue or the external message queue. It allows the current call stack
entry to send a message to its caller, a previous caller, or itself.
173

This API has required and optional parameters as shown in Table 35.

Table 35. Required parameter group for QMHSNDPM

Message identifier and Qualified message file name are used to identify the
predefined message being sent. For an immediate message, these fields should
be set to blanks.

The third parameter specifies the data to insert in the predefined message's
substitution variables or the complete text of an immediate message.

For a message type, you can specify one of these values: *COMP, *DIAG,
*ESCAPE, *INFO, *INQ, *NOTIFY, *RQS, or *STATUS.

Call stack entry together with Call stack count identify the program of the
message queue to which the message is being sent.

Message key is assigned by the API and returned to the program.

Error code defines the structure in which to return error information. For the
format of the structure, see “Error code parameter” on page 143.

Table 36. Optional parameter group 1 for QMHSNDPM

The Call stack entry qualification parameter is used when it is necessary to
further identify the call stack entry.

Table 37. Optional parameter group 2 for QMHSNDPM

Number Description Use Data type

1 Message identifier Input Char(7)

2 Qualified message file name Input Char(20)

3 Message data or immediate text Input Char(*)

4 Length of message data or immediate text Input Integer(10)

5 Message type Input Char(10)

6 Call stack entry Input Char(*) or
Pointer

7 Call stack counter Input Integer(10)

8 Message key Output Char(4)

9 Error code I/O Char(*)

Number Description Use Data type

10 Length of call stack entry Input Integer(10)

11 Call stack entry qualification Input Char(20)

12 Display program messages screen wait time Input Integer(10)

Number Description Use Data type

13 Call stack entry data type Input Char(10)

14 Coded character set identifier Input Integer(10)
174 Who Knew You Could Do That with RPG IV?

The Call stack entry data type parameter relates to the required parameter call
stack entry and defines its type, either *CHAR or *PTR. If it is not specified, the
assumed value is a character string.

5.4.2.2 Receive Program Message (QMHRCVPM) API
The Receive Program Message (QMHRCVPM) API receives a message from a
call message queue or external message queue and returns information
describing the message.

This API has required and optional parameters as shown in Table 38.

Table 38. Required parameter group for QMHRCVPM

The first parameter defines the variable that receives the information returned, in
the format specified in the Format name parameter, of the length specified in the
Length of message information parameter.

For the format name, you can specify one of these names:

RCVM0100 Brief message information
RCVM0200 All message information
RCVM0300 All message information including sender information

Call stack entry together with Call stack count identify the program of the
message queue to which the messages are to be received.

The Message type and Message key parameters are used together to specify the
selection criteria for receiving messages.

Wait time specifies the amount of time to wait for the message to arrive in the
queue so it can be received. The valid values are:

0 Do not wait for the message.

-1 Wait until the message arrives in the queue and is received, no
matter how long it takes.

n Wait n seconds for the message to arrive in the queue.

Number Description Use Data type

1 Message information Output Char(*)

2 Length of message information Input Integer(10)

3 Format name Input Char(8)

4 Call stack entry Input Char(*) or
Pointer

5 Call stack counter Input Integer(10)

6 Message type Input Char(10)

7 Message key Input Char(4)

8 Wait time Input Integer(10)

9 Message action Input Char(10)

10 Error code I/O Char(*)
175

Message action defines the action to take after the message is received. The
valid values are:

*OLD Keep the message in the message queue, and mark it as an old
message.

*REMOVE Remove the message from the message queue.

*SAME Keep the message in the message queue without changing its new
or old designation.

Table 39. Optional parameter group 1 for QMHRCVPM

The Call stack entry qualification parameter is used when it is necessary to
further identify the call stack entry.

Table 40. Optional parameter group 2 for QMHRCVPM

The Call stack entry data type parameter relates to the required parameter Call
stack entry and defines its type as either *CHAR or *PTR. If it is not specified, the
assumed value is a character string.

RCVM0100 format
The received message data is returned in the selected format. In our example,
we use the simplest format RCVM0100. For other formats, refer to the IBM
manual System API Reference: OS/400 Message Handling APIs, SC41-5862.

Table 41 shows the message information returned in the format RCVM0100.

Table 41. RCVM0100 format

Number Description Use Data type

11 Length of call stack entry Input Integer(10)

12 Call stack entry qualification Input Char(20)

Number Description Use Data type

13 Call stack entry data type Input Char(10)

14 Coded character set identifier Input Integer(10)

From To Description Type

1 4 Bytes returned Integer(10)

5 8 Bytes available Integer(10)

9 12 Message severity Integer(10)

13 19 Message identifier Char(7)

20 21 Message type Char(2)

22 25 Message key Char(4)

26 32 Reserved Char(7)

33 36 CCSID conversion status indicator of
message data or text

Integer(10)

37 40 CCSID of replacement data or impromptu
message text

Integer(10)
176 Who Knew You Could Do That with RPG IV?

Bytes returned defines the length of all information returned in the format. When
you attempt to receive a message and the message is not found, the following
results occur:

• The value of the bytes returned field is 8.
• The value of the bytes available field is 0.

The message severity, identifier, type, and key contain information about the
received message.

The last field in this format contains the values for substitution variables in a
predefined message, or the text of an impromptu message.

5.4.2.3 List Job Log Messages (QMHLJOBL) API
The List Job Log Messages (QMHLJOBL) API lists messages sent to the job
message queue of a job. This API gets the requested message information and
returns it in a user space in the format specified in the parameter list.

The generated list replaces any existing information in the user space. If the user
space is not large enough to contain the data to be returned, the user space is
increased to the maximum user space size allowed (16 MB) or the maximum
amount of storage allowed to the user of the API.

This API has required parameters only, which are shown in Table 42.

Table 42. Required parameter group for QMHLJOBL

The Qualified user space name parameter specifies the user space that receives
the generated list, and the library in which it is located. The first 10 characters
contain the user space name, and the second 10 characters contain the user
space library.

The format of the returned message information is defined by the format name
parameter. The valid format name is LJOB0100.

41 44 Length of replacement data or impromptu
message text returned

Integer(10)

45 48 Length of replacement data or impromptu
message text available

Integer(10)

49 * Replacement data or impromptu message
text

Char(*)

Number Description Use Data type

1 Qualified user space name Input Char(20)

2 Format name Input Char(8)

3 Message selection information Input Char(*)

4 Size of message selection information Input Integer(10)

5 Format of message selection information Input Char(8)

6 Error code I/O Char(*)

From To Description Type
177

The message selection parameters determine the job message queue and
messages to be selected. For the format name for the message selection
information parameter, you can use JSLT0100 or JSLT0200. The formats are the
same with the exception that the JSLT0200 format allows you to specify the
CCSID for the returned message data.

JSLT0100 format
Table 43 shows the message selection information that can be defined using the
format JSLT0100.

Table 43. JSLT0100 format

Maximum messages requested specifies the maximum number of messages to
be returned. To list all messages in the job log in the specified list direction from
the starting message key, use the special value of -1.

List direction specifies the direction to list messages. Valid values are *NEXT or
*PRV.

To identify the job whose messages are to be listed, you can use either job name,
user name and job number, or internal job identifier provided by the List Job
(QUSLJOB) API. The value "*" in a job name is used to identify a current job.

Starting message key specifies a key to begin searching for messages. You can
use these special values for the message key:

'00000000'X Start searching from the oldest message in the queue.
'FFFFFFFF'X Start searching from the newest message in the queue.

From To Description Type

1 4 Maximum messages requested Integer(10)

5 14 List direction Char(10)

15 24 Qualified job name Char(10)

25 34 Qualified user name Char(10)

35 40 Qualified job number Char(6)

41 56 Internal job identifier Char(16)

57 60 Starting message key Char(4)

61 64 Maximum message length Integer(10)

65 68 Maximum message help length Integer(10)

69 72 Offset to identifiers of fields to return Integer(10)

73 76 Number of fields to return Integer(10)

77 80 Offset to call message queue name Integer(10)

81 84 Length of call message queue name Integer(10)

The offsets to these fields
are specified in the
previous offset variables.

Identifiers of fields to return Array(*) of
Integer(10)

Call message queue name Char(*)
178 Who Knew You Could Do That with RPG IV?

The maximum message length parameters specify the number of characters of
text that this API returns. The special value of -1 defines that the maximum length
will be used.

At the end of format LJOB0100, one or more selected fields are returned. They
are defined by special identifiers, such as "0302" for a message with replacement
data. The user must specify their number and offset to these fields.

The last field in format LJOB0100 specifies the name of the call message queue
from which the messages are listed. You must use one of these values:

* Messages from every call stack entry of the job are listed.
*EXT Only messages sent to the external message queue (*EXT) of the job

are to be listed.

Format of generated lists
To provide a consistent design and use of the user space (*USRSPC) objects, the
OS/400 list APIs use a common data structure. The list APIs are those APIs that
generate a list and have a user space parameter, such as the List Job Log
Messages (QMHLJOBL). The user space created with QMHLJOBL API consists
of the following areas:

• A user area
• A generic header
• An input parameter section
• A header section
• LJOB0100 format

Figure 24 on page 180 shows the general data structure for list APIs.
179

Figure 24. General data structure for list APIs

Generic header format
Table 44 shows the layout of the generic header format for an original program
model (OPM) program.

Table 44. Generic header format

From To Description Type

1 64 User area Char(64)

65 68 Size of generic header Integer(10)

69 72 Structure’s release and level Char(4)

73 80 Format name Char(8)

81 90 API used Char(10)

91 103 Date and time created Char(13)

104 104 Information status Char(1)

105 108 Size of user space used Integer(10)

109 112 Offset to input parameter section Integer(10)

113 116 Size of input parameter section Integer(10)

117 120 Offset to header section Integer(10)

121 124 Size of header section Integer(10)

64 Byte User Area

Size of Generic Header

.

.

.

Offset and Size of Input
Parameter Section

Offset and Size of Header
Section

Offset and Size of List Data
Section

Number and Size of List
Entries

Entry 1

Entry 2

Entry 3

.

.

.

Last Entry

Generic Header Section

Input Parameter Section

Header Section (60 Bytes)

List Data Section
(Entries are in LJOB0100
format)
180 Who Knew You Could Do That with RPG IV?

Input parameter section format
This section contains an exact copy of all the parameters coded in the call to the
API. Table 45 shows the layout of the input parameter section format.

Table 45. Input parameter section format

125 128 Offset to list data section Integer(10)

129 132 Size of list data section Integer(10)

133 136 Number of list entries Integer(10)

137 140 Size of each entry Integer(10)

141 144 CCSID of data in the list entries Integer(10)

From To Description Type

1 10 User space name specified Char(10)

11 20 User space library specified Char(10)

21 28 Format name specified Char(8)

29 36 Format of message selection information
specified

Char(8)

37 40 Size of message selection information
specified

Integer(10)

41 44 Maximum messages requested specified Integer(10)

45 54 List direction specified Char(10)

55 64 Job name specified Char(10)

65 74 User profile specified Char(10)

75 80 Job number specified Char(6)

81 96 Internal job identifier specified Char(16)

97 100 Staring message key specified Char(4)

101 104 Maximum message length specified Integer(10)

105 108 Maximum message help length specified Integer(10)

109 112 Offset to identifiers of fields to return
specified

Integer(10)

113 116 Number of fields to return specified Integer(10)

117 120 Offset to call message queue specified Integer(10)

121 124 Length of call message queue specified Integer(10)

125 128 Coded character set identifier specified Integer(10)

129 * Reserved Char(*)

The offsets to these fields
are specified in the
previous offset variables.

Identifiers of fields to return specified Array(*) of
Integer(10)

Call message queue specified Char(*)

From To Description Type
181

Header section format
This section contains information about the current values of parameters used by
this invocation of the API. Table 46 shows the layout of the header section format.

Table 46. Header section format

LJOB0100 format
Table 47 shows the information returned in the list data section of the user space
for the LJOB0100 format. The offsets listed are from the beginning of the user
space. The structure defined by this format is repeated for each message entry
returned.

Table 47. LJOB0100 format

From To Description Type

1 10 User space name used Char(10)

11 20 User space library used Char(10)

21 24 Starting message key used Char(4)

25 28 Ending message key used Char(4)

29 38 Job name used Char(10)

39 48 User profile used Char(10)

49 54 Job number used Char(6)

55 56 Reserved Char(2)

57 60 Coded character set identifier used Integer(10)

From To Description Type

1 4 Offset to the next entry Integer(10)

5 8 Offset to fields returned Integer(10)

9 12 Number of fields returned Integer(10)

13 16 Message severity Integer(10)

17 23 Message identifier Char(7)

24 25 Message type Char(2)

26 29 Message key Char(4)

30 39 Message file name Char(10)

40 49 Message file library specified at send time Char(10)

50 56 Date sent Char(7)

57 62 Time sent Char(6)

63 * Reserved Char(*)
182 Who Knew You Could Do That with RPG IV?

5.4.3 Programming with message handling APIs
Message handling APIs are used in an RPG IV program the same way as other
OPM APIs. They can be used to establish communication between programs by
sending messages instead of transferring program parameters. This technique is
similar to the use of data queues for program communication, but is limited to the
programs within the same job.

For the sake of simplicity, we use immediate messages in our examples instead
of predefined messages, which must be defined in the message file.

5.4.3.1 Source code for prototypes MSGPROTO
Source member MSGPROTO contains prototypes for calling the message
handling APIs QMHSNDPM, QMHRCVPM, and QMHLJOBL.

* Filename MSGPROTO from APISRC in RPGISCOOL

* Prototype for API QMHSNDPM - Send Program Message
D SendMessage Pr ExtPgm('QMHSNDPM') 1
D MsgId 7A
D QualMsgFile 20A
D MsgData 30A
D MsgDataLen 10I 0 Const
D MsgType 10A Const
D CallStEntry 10A
D CallStCount 10I 0
D MsgKey 4A
D Error 16A

* Prototype for API QMHRCVPM - Receive Program Message
D RcvMessage Pr ExtPgm('QMHRCVPM') 2
D MsgData 78A
D MsgDataLen 10I 0 Const
D FormatName 8A Const
D CallStEntry 10A
D CallStCount 10I 0
D MsgType 10A Const
D MsgKey 4A
D WaitTime 10I 0
D MsgAction 10A Const
D Error 16A

* Prototype for API QMHLJOBL - List Job Log Messages
D ListJobLog Pr ExtPgm('QMHLJOBL') 3
D QualUserSpc 20A
D FormatRet 8A Const
D SelInfo 84A
D SelInfoSize 10I 0 Const

These fields repeat for
each identifier specified.

Offset to the next field information returned Integer(10)

Length of field information returned Integer(10)

Identifier field Integer(10)

Type of data Char(1)

Status of data Char(1)

Reserved Char(14)

Length of data Integer(10)

Data Char(*)

Reserved Char(*)

From To Description Type
183

D FormatSel 8A Const
D Error 16A

Program notes
1 Prototype for calling system API QMHSNDPM. Two parameters, defined with

keyword CONST, are passed as constant values.

2 Prototype for calling system API QMHRCVPM. Four parameters, defined with
keyword CONST, are passed as constant values.

3 Prototype for calling system API QMHLJOBL. Three parameters, defined with
keyword CONST, are passed as constant values.

5.4.3.2 Message handling example 1
In this example, we use two simple programs to demonstrate the program
communication by exchanging messages. The program SNDMSG sends several
messages to the program message queue of its calling program. Another
program, RCVMSG, first calls the program SNDMSG. Then, it retrieves all
messages from its program message queue and check, if they are sent from
program SNDMSG.

Source code for the program SNDMSG
This program uses the API QMHSNDPM to send several messages to its caller:

* Filename SNDMSG from APISRC in RPGISCOOL

* Include prototypes
D/Copy RPGISCOOL/APISRC,MSGPROTO 1

* Copy QUSEC data structure for error handling
D/COPY QSYSINC/QRPGLESRC,QUSEC 2

* Program variable definitions
D MsgId S 7A Inz 3
D QualMsgFile S 20A Inz
D MsgData S 30A Inz
D CallStEntry S 10A Inz('*')
D CallStCount S 10I 0 Inz(2)
D MsgKey S 4A
D Index S 5I 0

C For Index = 1 By 1 To 5

C Eval MsgData = 'SESAME ' + %Char(Index) +
C '. Message from SNDMSG'
* Call QMHSNDPM to send five messages to calling program 4
C CallP SendMessage(MsgID : QualMsgFile : MsgData
C : %Len(MsgData) : '*INFO' : CallStEntry
C : CallStCount : MsgKey : QUSEC)

C EndFor

C Eval *InLR = *On

SNDMSG program notes
1 Copy prototype definitions from member MSGPROTO.

2 Copy statement used to include a common structure for an error code
parameter from library QSYSINC.

3 Parameter definitions with initial values. Call stack entry and call stack count
parameters define the program to whom messages are sent. In this example,
we do not use predefined messages, so the message ID and message file
parameters are initialized to blanks.

4 Call the API to send a prepared message as an informational message (type
*INFO). The program prepares the text for the impromptu message. The
184 Who Knew You Could Do That with RPG IV?

program marks it with the word "SESAME" in the first six positions, which will
be used by the receiving program to identify these messages among others in
its program message queue. This is necessary because we do not have a
message identifier for impromptu messages.

Source code for the program RCVMSG
This program first calls the program SNDMSG, which sends several messages.
Then, it uses the API QMHRCVPM to retrieve all these messages from its
program message queue.

* Filename RCVMSG from APISRC in RPGISCOOL

* Include prototypes
D/Copy RPGISCOOL/APISRC,MSGPROTO 1

* Copy QUSEC data structure for error handling
D/COPY QSYSINC/QRPGLESRC,QUSEC 2

* Format RCVM0100 with received fields
D RCVM01DS DS 3
D BytesRetrn 10I 0
D BytesAvlbl 10I 0
D MsgSev 10I 0
D MsgId 7A
D MsgTypeRet 2A
D MsgKeyRet 4A
D Reserved 7A
D CCSID1 10I 0
D CCSID2 10I 0
D DtaLenRetrn 10I 0
D DtaLenAvlbl 10I 0
D* DtaLenAvlbl 10I 0 Inz(30)
D MsgTextRet 30A

* Program variable definitions
D CallStEntry S 10A Inz('*') 4
D CallStCount S 10I 0 Inz(0)
D MsgKey S 4A
D Wait S 10I 0 Inz(0)

C Call 'SNDMSG' 5

C DoW not *InLR

* Call QMHRCVPM to receive all messages sent to this program
C CallP RcvMessage(RCVM01DS : %Len(RCVM01DS) : 6
C 'RCVM0100' : CallStEntry : CallStCount :
C '*INFO' : MsgKey : Wait : '*REMOVE' :
C QUSEC)
C If BytesRetrn=8
C Leave
C EndIf

* Check if the message was sent from SNDMSG program
C If %Subst(MsgTextRet : 1 : 6) = 'SESAME' 7
C MsgTextRet Dsply
C EndIf

C EndDo

C Eval *InLR = *On

RCVMSG program notes
1 Copy prototype definitions from member MSGPROTO.

2 Copy statement used to include the common structure for the error code
parameter from the QSYSINC library.

3 Data structure that maps format RCVM0100 fields with all values received
from the message.
185

4 Parameter definitions with initial values. Call stack entry and call stack count
parameters define that the messages for the current program are to be read.

5 Call program SNDMSG to produce messages.

6 Call the API to receive the message and put its data into the RCVM0100
format. Due to the *REMOVE action, a received message is removed from the
message queue. Check for no more messages condition by comparing bytes
returned value to 8.

7 To identify messages sent from the program SNDMSG, check for the word
"SESAME" in the first six positions of the message data. This is used as a
replacement for the message ID.

5.4.3.3 Message handling example 2
In this example, we use the already known program SNDMSG to send several
messages to the program message queue of its calling program. The LSTMSG
calling program uses another technique this time to receive messages. Invoking
the API QMHLJOBL, it gets all messages from the job log listed in the user
space, and then reads them by checking if they are sent from the program
SNDMSG.

There is an example of a practical use for user spaces described in 5.3, “User
space APIs” on page 153.

Source code for the program LSTMSG
This program uses the API QMHLJOBL to get the list of all messages from the job
log in the user space. To define all the data structures needed by this API, we
could use copy member QMHLJOBL from the QRPGLESRC file in the library
QSYSINC, but it contains short and meaningless field names. We have decided
to define our own data structures with meaningful names for better readability of
the program.

To create a user space and to retrieve the pointer to this user space, in this
example, we use two procedures created in 5.3, “User space APIs” on page 153.
They are contained in the program SPACEPROCS.

You can try this example by compiling the code from this section on your
AS/400 system. Use the following command to create the programs:

CRTBNDRPG PGM(RPGISCOOL/SNDMSG) SRCFILE(RPGISCOOL/APISRC)
CRTBNDRPG PGM(RPGISCOOL/RCVMSG) SRCFILE(RPGISCOOL/APISRC)

To run the program, use the following command:

CALL PGM(RPGISCOOL/RCVMSG)

You get the following answers on your screen:

SESAME 1. Message from SNDMSG
SESAME 2. Message from SNDMSG
SESAME 3. Message from SNDMSG
SESAME 4. Message from SNDMSG
SESAME 5. Message from SNDMSG

Try it yourself
186 Who Knew You Could Do That with RPG IV?

The source program must be compiled into the module and then bound with the
module SPACEPROCS to create an executable program.

* Filename LSTMSG from APISRC in RPGISCOOL

* Include prototypes
D/Copy RPGISCOOL/APISRC,MSGPROTO 1
D/Copy RPGISCOOL/APISRC,SPACEPROTO 2

* Copy QUSEC data structure for error handling
D/COPY QSYSINC/QRPGLESRC,QUSEC 3

* Format JSLT0100 with selection parameter
D JSLT01DS DS 4
D MaxMsgReq 10I 0 Inz(-1)
D ListDir 10A Inz('*NEXT')
D JobName 10A Inz('*')
D UserName 10A Inz
D JobNumber 6A Inz
D IntJobId 16A Inz
D StrMsgKey 4A Inz(X'00000000')
D MaxMsgLen 10I 0 Inz(-1)
D MaxMsgHLen 10I 0 Inz
D OffsetFldRet 10I 0 Inz(84)
D NumFldRet 10I 0 Inz(1)
D OffsetMsgQ 10I 0 Inz(88)
D LengthMsgQ 10I 0 Inz(4)
D Field1 10I 0 Inz(0302)
D MQName 4A Inz('*')

* Generic Header data structure
D GenHeadDS DS Based(BasePtr) 5
D UserArea 64
D SizeGenHed 10I 0
D StrRelLvl 4A
D FmtName 8A
D APIName 10A
D DateTime 13A
D InfStatus 1A
D UserSpcSize 10I 0
D IPSecOffset 10I 0
D IPSecSize 10I 0
D HSecOffset 10I 0
D HSecSize 10I 0
D LDSecOffset 10I 0
D LDSecSize 10I 0
D EntryNumber 10I 0
D EntrySize 10I 0
D CCSID 10I 0

* Format LJOB0100 with message entry data
D LJOB01DS DS Based(ListPtr) 6
D NxtEntOffset 10I 0
D FldRetOffset 10I 0
D FldRetNumber 10I 0
D MsgSev 10I 0
D MsgID 7A
D MsgType 2A
D MsgKey 4A
D MsgFileName 10A
D MsgFileLib 10A
D DateSent 7A
D TimeSent 6A
D Reserved1 8192A

* Message entry format at end of LJOB0100 format
D MsgEntryDS DS Based(EntryPtr) 7
D NxtFldOffset 10I 0
D FldInfLen 10I 0
D FieldID 10I 0
D DataType 1A
D DataStatus 1A
D Reserved2 14A
D DataLen 10I 0
D DataText 30A

* Program variable definitions
D QualUserSpc DS
187

D SpaceName 10A Inz('JOBLOG')
D Library 10A Inz('*CURLIB')

C Call 'SNDMSG' 8

* Call QUSCRTUS to create user space
C CallP CreateSpace(SpaceName) 9
* Call QUSPTRUS to retrieve pointer to user space
C Eval BasePtr=GetSpacePtr(SpaceName:Library) 10
* Call QHMLJOBL to list job log messages
C CallP ListJobLog(QualUserSpc : 'LJOB0100' 11
C : JSLT01DS : %Len(JSLT01DS) : 'JSLT0100'
C : QUSEC)

C Eval ListPtr = BasePtr + LDSecOffset 12
C Eval EntryPtr = BasePtr + FldRetOffset

C Do EntryNumber

C If %Subst(DataText : 1 : 6) = 'SESAME' 13
C DataText Dsply
C EndIf
C Eval ListPtr = BasePtr + NxtEntOffset
C Eval EntryPtr = BasePtr + FldRetOffset

C EndDo

C Eval *InLR = *On

LSTMSG program notes
1 Copy prototype definitions from member MSGPROTO.

2 Copy prototype definitions from member SPACEPROTO.

3 Copy statement used to include the common structure for the Error code
parameter from the library QSYSINC.

4 Data structure which maps format JSLT0100 fields, where we define all
message selection criteria. In our case, we request only the data part (field
identifier 0302) to be retrieved from all messages in the job log of the current
job.

5 Data structure that maps generic header fields at the beginning of the user
space. This data structure contains fields with offsets and sizes of other
sections in the generated list. It is based on the pointer that is loaded by the
GetSpacePtr procedure.

6 Data structure that maps format LJOB0100 fields, where message entry data
is returned. For each message retrieved from the job log, one entry in this
format is returned in the list data section. It is based on another pointer to
allow scrolling through all message entries.

7 Data structure that maps requested fields from one message entry. In our
case, we have only one field containing message data. It is also based on
pointer to allow scrolling through all requested fields.

8 Call program SNDMSG to produce messages.

9 Procedure CreateSpace creates new user space.

10 Procedure GetSpacePtr loads BasePtr with the address of the user space.

11 Call system API QMHLJOBL to list selected job log entries into the user space.

12 Load pointers needed to access message data in the user space.

13 In the loop controlled by the number of entries, check first six characters of the
message data to identify entries sent from program SNFMSG. Then, increase
the pointers to access the next entry.
188 Who Knew You Could Do That with RPG IV?

5.5 Sockets

Sockets are traditionally thought of as being in the domain of the C programmer.
This belief is reinforced by some IBM documentation, which suggests that you
cannot use sockets functions from RPG. Luckily for you, we did not read those
parts of the manuals before writing these examples!

If you find yourself interested in sockets programming, but do not understand the
background, please review OS/400 Sockets Programming V4R4, SC41-5422.
This manual offers a good discussion of socket programming, in general, and on
the AS/400 system. It does not discuss RPG, which is the purpose of this section.

The examples in this section show two programs: client and server. The server
starts and waits for messages from the client. The client initiates the
communication by sending a message to the server. In our examples, the client is
an interactive program that sends a request to the server and receives the
answer from the server. The server can be run in batch or interactive mode. The
examples all use connection-oriented Socket communication. This type of
communication is the most commonly used due to its reliability.

Both the server and client programs are written in RPG IV. A more likely situation
is when one of the programs is written and run in another platform, typically in the
C language. Therefore, the RPG IV programmer can use either side of the socket
communication from our examples. When using sockets with other systems, the
programmer has to translate data from ASCII to EBCDIC code and vice versa.

5.5.1 Typical communication between a server and client
"Connection-oriented" implies that a connection is established and a dialog
between the programs will follow. The program that provides the service (the
server program) establishes the connection and gives itself a name of where that
service can be obtained. The client of the service (the client program) must
request the service of the server program by connecting to the distinct name that
the server program has designated. It is like you (a client) dialing a telephone
number (an identifier) and making a connection with another party offering a

You can try this example by compiling the code from this section on your
AS/400 system. Use the following commands to create the programs:

CRTRPGMOD MODULE(RPGISCOOL/LSTMSG) SRCFILE(RPGISCOOL/APISRC)
CRTPGM PGM(RPGISCOOL/LSTMSG) MODULE(LSTMSG SPACEPROCS)

To run the program, use the following command:

CALL PGM(RPGISCOOL/LSTMSG)

The following answers appear on your screen:

SESAME 1. Message from SNDMSG
SESAME 2. Message from SNDMSG
SESAME 3. Message from SNDMSG
SESAME 4. Message from SNDMSG
SESAME 5. Message from SNDMSG

Try it yourself
189

service (for example, a plumber). Once the receiver of the call (the server)
answers the telephone, the connection is established. The caller can verify that
they reached the correct party and the connection remains active as long as both
parties require it.

The following socket functions are most commonly used in the
connection-oriented communication:

socket Obtains a new socket description (both client and server).

setsockopt Sets various attributes to the socket (both server and client).

bind Binds the program to the socket (server).

listen Enables the client program to connect the server program
(server).

accept Waits for the connect function from the client program (server).

connect Connects to the server (client).

gethostbyname Transforms the host name to an IP address (client).

inetaddr Transforms an IP address from a dotted to a binary form.

read Reads a message from the socket. The recv function can be
used as well.

write Writes a message to the socket. The send function can be
used as well.

close Closes the socket (both client and server).

Figure 25 shows how a typical communication between two programs appears.

Figure 25. Communication between the server and client

Client and Server application
Server
socket SD

bind
listen

accept
read
write

...
close SD, SD2

Client

socket SD
gethostbyname

connect
write
read
...
close SD

SD

1

1

SD2 SD2
3
4

5 5
190 Who Knew You Could Do That with RPG IV?

The communication process in Figure 25 is described in the following series of
events:

1. The server is started first and makes itself available for the communication by
issuing socket, bind, and listen functions using its own socket description SD.

2. The server issues the accept function that waits for a connect request from the
client.

3. The client is started and issues the socket and gethostbyname (or inetaddr)
functions using its own socket description SD 1.

4. The client issues a connect request that is accepted by the server. The accept
function in the server creates a second socket description SD2. The server
uses it for further communication with the client 2.

5. The server reads data from the client using the read function through the
second socket description SD2 (or waits if no data comes) 3.

6. The client sends the first data using the write function over its SD socket. The
server receives it by using the read function through the socket description
SD2 3.

7. The server processes the data and sends a reply to the client using the write
function 4.

8. The client receives the reply by using the read function and processes it 4.

9. Communication proceeds by alternating write/read functions on the client side
and read/write functions on the server side.

10.The communication can be ended by the client that can send special request
data telling the server to finish its work. Both the client and the server issue
the close function. The server closes the SD and SD2 sockets, and the client
closes its SD socket 5.

5.5.2 The socket functions interface
The socket functions used in the following examples are described along with
their interface, including the prototypes and the special values.

The RPG IV function prototypes are presented both in the C language and RPG
IV language in the form as they are entered in the CSKCPY /COPY member.

The C prototypes are contained in the QSYSINC library, H source file. There are
no QSYSINC prototypes for RPG IV socket functions for the time being.

5.5.2.1 The socket() function
The socket function is used to create an endpoint for communications. The
endpoint is represented by the socket descriptor returned by the socket function.
The socket descriptor is a structure, also called the socket address, and is
described at the bind function.

* int socket(int address_family,
* int type,
* int protocol)

D Socket Pr 10I 0 Extproc('socket')

D 10I 0 Value
D 10I 0 Value
D 10I 0 Value
191

Table 48 shows the parameters for this function.

Table 48. Parameters for the socket() function

The return values are:

n Socket descriptor number
-1 If unsuccessful

The address_family parameter can have the following values:

AF_INET Interprocess communications between processes on the same system
or different systems in the Internet domain. Its decimal value is 2. We
use this value in all our examples.

AF_NS Interprocess communications between processes on the same system
or different systems in the domain defined by the Novell or Xerox
protocol definitions. Its decimal value is 6.

AF_UNIX Interprocess communications between processes on the same system
in the UNIX domain. Its decimal value is 1.

AF_TELEPHONY
Interprocess communications between processes on the same system
in the telephony domain. Its decimal value is 99.

These values are defined in the CSKCPY /COPY member.

The type parameter can have the following values:

SOCK_STREAM
Indicates that a full-duplex stream socket is desired. We use this
value in all our examples. Its decimal value is 1.

SOCK_DGRAM
Indicates that a datagram socket is desired. Its decimal value is 2.

SOCK_SEQPACKET
Indicates that a full-duplex sequenced packet socket is desired. Each
input and output operation consists of exactly one record. Its decimal
value is 5.

SOCK_RAW
Indicates that communication is directly to the network protocols. A
process must have the appropriate privilege *ALLOBJ to use this type
of socket. Used by users who want to access the lower-level
protocols directly. Its decimal value is 3.

These values are defined in the CSKCPY /COPY member.

The protocol parameter can have many values of which 0 (zero) designates the
default protocol for the address family and type parameters.

Argument Description Use RPG IV
data type

C data
type

address_family Address family Input Integer(10) int

type Communication type Input Integer(10) int

protocol Protocol used with sockets Input Integer(10) int
192 Who Knew You Could Do That with RPG IV?

5.5.2.2 The setsockopt() function
The setsockopt() function is used to set various socket options. We use this
function to set a socket to be reusable. It means that the local socket address can
be reused.

* int setsockopt(int socket_descriptor,
* int level,
* int option_name,
* char *option_value,
* int option_length)
*
D SetsockOpt Pr 10I 0 Extproc('setsockopt')
D 10I 0 Value
D 10I 0 Value
D 10I 0 Value
D * Value
D 10I 0 Value

Table 49 shows the parameters for this function.

Table 49. Parameters for the setSockOpt() function

The return values are:

0 Successful
-1 Unsuccessful

5.5.2.3 The bind() function
The bind() function is used to associate a local address with a socket.

* int bind(int socket_descriptor,
* struct sockaddr *local_address,
* int address_length)

D Bind Pr 10I 0 ExtProc('bind')

D 10I 0 Value
D * Value
D 10I 0 Value

Table 50 on page 194 shows the parameters for this function.

Argument Description Use RPG data type C data
type

socket_descriptor Socket descriptor number Input Integer(10) int

level We use SOL_SOCKET (-1) Input Integer(10) int

option_name We use SO_REUSADDR (55) Input Integer(10) int

option_value We use pointer to 1 Input Pointer char *

option_length Length of the option value Input Integer(10) int
193

Table 50. Parameters for the bind() function

The return values are:

0 Successful
-1 Unsuccessful

The local address structure for the AF_INET address family has the following
format in the C language:

struct sockaddr_in { /* socket address (internet) */
short sin_family; /* address family (AF_INET) */
u_short sin_port; /* port number */
struct in_addr sin_addr; /* IP address */
char sin_zero[8]; /* reserved - must be 0x00's */

};

The structure in RPG IV looks like this:

D SocketAddr DS
D SinFamily 5I 0
D SinPort 5U 0
D SinAddr 10U 0
D SinZero 8A Inz(X'00')

The IP address in binary form is placed in the SinAddr field.

5.5.2.4 The listen() function
The listen() function is used to indicate a willingness to accept incoming
connection requests. If a listen() is not done, incoming connections are silently
discarded.

* int listen(int socket_descriptor,
* int back_log)

D Listen Pr 10I 0 ExtProc('listen')

D 10I 0 Value
D 10I 0 Value

Table 51 shows the parameters for this function.

Table 51. Parameters for the listen() function

Argument Description Use RPG data type C data type

socket_descriptor Socket descriptor number Input Integer(10) int

local_address Pointer to local address
structure

Input Pointer struct *

address_length Length of local address Input Integer(10) int

Argument Description Use RPG data type C data type

socket_descriptor Socket descriptor number Input Integer(10) int

back_log Number of clients to be
accepted

Input Integer(10) int
194 Who Knew You Could Do That with RPG IV?

The return values are:

0 Successful
-1 Unsuccessful

5.5.2.5 The accept() function
The accept() function is used to wait for connection requests. The accept()
function takes the first connection request on the queue of the pending
connection requests and creates a new socket to service the connection request.
The accept function is used with connection-oriented socket types, such as
SOCK_STREAM.

* int accept(int socket_descriptor,
* struct sockaddr *address,
* int *address_length)

D Accept Pr 10I 0 ExtProc('accept')

D 10I 0 Value
D * Value
D * Value

Table 52 shows the parameters for this function.

Table 52. Parameters for the accept() function

The return values are:

0 Successful
-1 Unsuccessful

The socket address structure is described in the bind function.

5.5.2.6 The connect() function
The connect() function is used to establish a connection on a connection-oriented
socket or establish the destination address on a connectionless socket.

* int connect(int socket_descriptor,
* struct sockaddr *destination_address,
* int address_length)

D Connect Pr 10I 0 Extproc('connect')
D 10I 0 Value
D * Value
D 10I 0 Value

Argument Description Use RPG data
type

C data
type

socket_descriptor Socket descriptor number Input Integer(10) int

address Pointer to socket address
structure

Input Pointer struct *

address_length Length of socket address Input Integer(10) int
195

Table 53 shows the parameters for this function.

Table 53. Parameters for the connect() function

The return values are:

0 Successful
-1 Unsuccessful

The socket address structure is as described in 5.5.2.3, “The bind() function” on
page 193.

5.5.2.7 The gethostbyname() function
The gethostbyname() function is used to retrieve information about a host. In this
case, it transforms the host name into the binary coded IP address. It returns a
pointer to the host entry structure. You use this function to obtain the IP address
for a hostname. The gethostbyname() function can take quite a long time before it
finds the IP address in appropriate tables.

* struct HostEnt *GetHostByName(char *host_name)

D GetHostByName Pr * Extproc('gethostbyname')

D * Value

The function has only one parameter, a pointer to the host name.

The return value is a pointer to the host entry structure, which is, in fact, a
hierarchy of structures. We use only one path in the hierarchy to find the IP
address.

The structure has the following form in the C language:

* struct HostEnt {
* char *h_name;
* char **h_aliases;
* int h_addrtype;
* int h_length;
* char **h_addr_list;
* };

The corresponding structure in the RPG IV language is as follows:

D HostEnt DS Align Based(Host@)
D HName@ *
D HAliases@ *
D HAddrType 10I 0
D HLength 10I 0
D HAddrList@ *

Argument Description Use RPG data type C data
type

socket_descriptor Socket descriptor number Input Integer(10) int

destination_address Pointer to socket address
structure

Input Pointer struct *

address_length Length of socket address Input Integer(10) int
196 Who Knew You Could Do That with RPG IV?

HName@ is a pointer that points to the host entry data structure where the IP
address is stored.

The host entry data structure has this form in the C language:

struct hostent_data { /* additional host entry data
Considered opaque. Must be
16 byte aligned. */

char h_name[NETDB_MAX_HOST_NAME_LENGTH+1];
/* host name */

char *h_aliases_arrayp[NETDB_MAX_ARRAY_SIZE+1];
/* Array of pointers to

h_aliases_array elements */
char h_aliases_array[NETDB_MAX_ARRAY_SIZE]

[NETDB_MAX_HOST_NAME_LENGTH+1];
/* Alias Array */

char *h_addr_arrayp[NETDB_MAX_HOST_ADDR_ARRAY_SIZE+1];
/* Array of pointers to

h_addr_array elements */
struct in_addr h_addr_array[NETDB_MAX_HOST_ADDR_ARRAY_SIZE];

/* Host address array */
struct netdb_control_block host_control_blk;

};

This structure has the following form in the RPG IV language:

D HostEntData DS Align Based(HostEntData@)
D HName 256A
D HAliasesArr@ * Dim(65)
D HAliasesArr 256A Dim(64)
D HAddrArr@ * Dim(101)
D HAddrArr 10U 0 Dim(100)
D OpenFlag 10I 0
D F0@ *
D FileP0 260A
D Reserved0 150A
D F1@ *
D FileP1 260A
D Reserved1 150A
D F2@ *
D FileP2 260A
D Reserved2 150A

We use the path "HName@ - HAddrArr@" to find the IP address. HAddrArr@ points to an
array of IP addresses of which we need the first address.

5.5.2.8 The InetAddr() function
The inet_addr function is used to transform the IP address in the dotted form into
its binary representation. It returns an unsigned integer (four bytes long)
containing the binary IP address.

*-- InetAddr --- Transform IP address from dotted form ----------
* unsigned long inet_addr(char *address_string)
D InetAddr Pr 10U 0 ExtProc('inet_addr')
D * Value

The function has only one parameter, a character value containing the IP address
in the dotted decimal form. Notation of the dotted decimal IP address value can
be in one of seven formats:

Format 1 - a.b.c.d
Format 2 - a.b.c.
Format 3 - a.b.c
Format 4 - a.b.
Format 5 - a.b
Format 6 - a.
Format 7 - a
197

The rules for converting a dotted decimal string are as follows:

• For format 1, each component is interpreted as one byte of the Internet
address.

• For format 2, each component is interpreted as one byte of the Internet
address. The right-most byte is set to zero.

• For format 3, each component is interpreted as one byte of the Internet
address, except for component c, which is interpreted as the right-most two
bytes of the Internet address.

• For format 4, each component is interpreted as one byte of the Internet
address. The right-most two bytes are set to zero.

• For format 5, each component is interpreted as one byte of the Internet
address, except for component b, which is interpreted as the right-most three
bytes of the Internet address.

• For format 6, component a is interpreted as one byte of the Internet address.
The right-most three bytes are set to zero.

• For format 7, component a is returned as the Internet address.

The return values are:

-1 Unsuccessful
n The 32-bit IP address

5.5.2.9 The read() function
The read() function reads data of the length specified in buffer_length from the
input into the memory area indicated by the buffer. If the buffer_length is zero, the
read() function returns a value of zero without attempting any other action.

* ssize_t read(int descriptor,
* void *buffer,
* size_t buffer_length)

D Read Pr 10I 0 Extproc('read')

D 10I 0 Value
D * Value
D 10U 0 Value

Table 54 shows the parameters for this function.

Table 54. Parameters for the read() function

The return values are:

n The read function was successful. The value returned is the number of
bytes actually read and placed in the buffer. The errno global variable
is set to a nonzero value to indicate the error.

Argument Description Use RPG data type C data type

socket_descriptor Socket descriptor number Input Integer(10) int

buffer Pointer to a data buffer Input Pointer void *

buffer_length Length of data to be read Input Integer(10) int
198 Who Knew You Could Do That with RPG IV?

0 The read function was not successful. The partner’s socket is closed.
The errno global variable is set to zero to indicate no error.

-1 The read function was not successful. The errno global variable is set
to indicate the error.

5.5.2.10 The write() function
The write() function writes data of the length specified in buffer_length from the
buffer to the socket. If the buffer_length is zero, write() returns a value of zero
without attempting any other action. The write() function can write data also to
files because files also use descriptors.

* ssize_t write (int file_descriptor,
* const void *buffer
* size_t buffer_length);

D Write Pr 10I 0 ExtProc('write')

D 10I 0 VALUE
D * VALUE
D 10U 0 VALUE

Table 55 shows the parameters for this function.

Table 55. Parameters for the write() function

The return values are:

n The write function was successful. The value returned is the number
of bytes actually written. This number is equal to buffer_length.

-1 The write function was not successful. The errno global variable is set
to indicate the error.

5.5.2.11 The close() function
The close() function closes the socket identified by the descriptor. We do not test
the return value in our examples calling the close() function by the CALLP
operation.

* int close(int descriptor)

D Close Pr ExtProc('close')

D 10I 0 Value

The return values are:

0 The close was successful.

-1 The close was not successful. The errno global variable is set to
indicate the error.

Argument Description Use RPG data type C data type

socket_descriptor Socket descriptor number Input Integer(10) int

buffer Pointer to a data buffer Input Pointer void *

buffer_length Length of data to be written Input Integer(10) int
199

5.5.3 Example of a simple server SSERVER and client SCLIENT
There are two programs: one server and one client. The server receives requests
from the client and responses to the requests. The request data from the client is
an item number that a user enters from the keyboard. The server finds the record
in the ITEMS file and sends it back to the client. The client displays the record on
the screen. If the client sends the item number "END", both the server and client
end.

This example is quite simple. Errors are checked only for debugging purposes.
The main socket functions are illustrated and some inconveniences of these
simple programs are highlighted.

The programs SSERVER and SCLIENT are written according to Figure 25 on
page 190.

5.5.3.1 The SSERVER program
To understand the logic of this program better, we break it up into the logical
pieces of data definition, procedure, and error handling.

SSERVER program: Data definition
Here is the source listing of the SSERVER program:

H DFTACTGRP(*NO) ACTGRP('QILE') BNDDIR('QC2LE') 1

* Database ITEMS file
FITEMS IF E K DISK

D SocketData E Ds ExtName(ITEMS) 2
D SocketData@ S * Inz(%Addr(SocketData))
D SockDtaLen S 10I 0 Inz(%size(SocketData))
D PortNumber S 10I 0 Inz(3005) 3
D SD S 10I 0 4
D SD2 S 10I 0 5
D RC S 10I 0 6
D OptVal S 10U 0 Inz(1) 7

* Necessary procedrure prototypes with some data definitions
/COPY SCKSRC,SCKCPY 8

D ErrorHdlr Pr 9
D DumpText 12 Value

1 The server program runs in the activation group QILE and binds only the
necessary service programs from those listed in binding directory QC2LE.
These service programs contain common C language functions.

2 SocketData is a variable for data exchange between server and client. It is
structured like the ITEMS file record. Its address and length are required in the
socket read and write functions.

3 PortNumber is needed to bind the socket with an IP address. The variable is
initialized by a port number that does not match with "well known" port
numbers. The well-known port numbers are assigned to various applications.
TCP and UDP protocols use ports to identify a unique origin or the destination
of the communication with an application. Each port is assigned a short integer
(5U 0 in RPG IV).

4 SD is a socket description number obtained by the server through the socket
function. This socket is used by the server for listening to clients.
200 Who Knew You Could Do That with RPG IV?

5 SD2 is a socket description number obtained by the server through the accept
function. This socket is used for conversation between the client and the
server.

6 RC serves as a general return code for socket functions.

7 OptVal is a nonzero number required by the setsockopt function, which is used
here for setting a socket to be reusable.

8 The /COPY statement brings all necessary prototype definitions for socket
functions (subprocedures) contained in service programs of the operating
system.

9 The prototype for our own error handling subprocedure is specified.

SSERVER program: Procedure
The server obtains a socket, makes it reusable, listens to one client, binds to an
IP address and a port, accepts the connection request from the client by creating
a new socket, and enters a processing loop. In the loop, the server reads data
from the client, processes it, and sends back a response to the client back. When
the data is "END", the server closes sockets and ends.

* Obtain a socket descriptor for itself 1
C Eval SD = Socket (AF_INET: SOCK_STREAM: 0)

* If socket failed - End the server program with dump
C If SD < 0 2
C CallP ErrorHdlr ('ServerSocket')
C Return
C EndIf

* Allow socket description to be reusable 3
C Eval RC = SetSockOpt (SD: SOL_SOCKET
C : SO_REUSEADDR
C : %Addr(OptVal)
C : %Size(OptVal))

* Bind the socket to an IP address 4
C Eval SocketAddr = *ALLX’00’
C Eval SinFamily = AF_INET
C Eval SinPort = PortNumber
C Eval SinAddr = INADDR_ANY
C Eval RC = Bind (SD: %ADDR(SocketAddr) 5
C : %SIZE(SocketAddr))

* If bind failed - End the server program with dump
C If RC < 0
C CallP ErrorHdlr ('ServerBind')
C Return
C EndIf

* Listen to one client only
C Eval RC = Listen (SD: 1) 6

* If listen failed - End the server program with dump
C If RC < 0
C CallP ErrorHdlr ('ServerListen')
C Return
C EndIf

* Accept incoming connection request from the client.
* A new socket (SD2) is created for the client.
C Eval SD2 = Accept (SD: SockAddr: AddrLen) 7

* If accept failed - End the server program with dump
C If RC < 0
C CallP ErrorHdlr ('ServerAccept')
C Return
C EndIf

* Enter read/write loop
201

C DoW 0 = 0

* Read data from the client's socket to SocketData variable 8
C Eval RC = Read (SD2: SocketData@: SockDtaLen)

* If read failed - End the server program with dump
C If RC <= 0
C CallP ErrorHdlr ('ServerRead')
C EndIf

* If the first characters of item number are END - end the server
C If ITEMNBR = 'END' 9
C Leave
C EndIf

* Read the corresponding record from the ITEMS file by key
C ITEMNBR Chain ITEMS

* If found - Send data to the client
C If Not %Found

* If not found - Send question marks to the client
C Eval UNITPR = 0
C Eval ITEMDESC = *All'?' 10
C EndIf

* Write response to the client (the item record or question marks) 11
C Eval RC = Write (SD2: SocketData@: SockDtaLen)

* If write failed - End the server program with dump
C If RC <= 0
C CallP ErrorHdlr ('ServerWrite')
C Return
C EndIf

* End read/write loop
C EndDo

* End program
C CallP Close(SD2) 12
C CallP Close(SD)
C Eval *InLR = *ON

1 The socket function creates a socket descriptor and returns its number in the
SD variable.

2 An SD value of 0 or more represents a valid socket description number. If SD =
-1 the socket function was not successful. In this case, an error handling
subprocedure is called, which dumps the memory and ends the server
program.

3 SetSockOpt is a function that sets various attributes to the socket. In this case,
it indicates that the local socket address can be reused. The socket can be
used again after it is closed.

4 Before the bind function can be performed, the socket local address data
structure must be initialized by certain values. The socket local address has the
following structure:

D SocketAddr DS
D SinFamily 5I 0
D SinPort 5U 0
D SinAddr 10U 0
D SinZero 8A Inz(*ALLX'00')

The following values are used in socket functions as parameters:

D SockAddr S * Inz(%Addr(SocketAddr))
D AddressLength S 10I 0
D AddrLen S * Inz(%Addr(AddressLength))

The numeric value of INADDR_ANY is 0.
202 Who Knew You Could Do That with RPG IV?

5 The bind function returns 0 if successful, or -1if it is not successful.

6 The listen function prepares the server to communicate with one client.

7 The accept function waits for the client’s connect request. When the request
comes, the accept function returns a new socket description number in the SD2
variable. If SD2 is -1, the function ended with error.

8 Communication between the client and server occurs in an "infinite" loop. The
server issues a read function over the SD2 socket and waits for a request data
from the client. If the read function is successful (data is available), RC is equal
to the data length. A return code of 0 means "end of file". A return code of -1
indicates that an error occurred.

9 Incoming data is interpreted as an item number (in the SocketData data
structure). However, if the "item number" is END, the server ends. Otherwise,
the corresponding record is read from the ITEMS file.

10If the item number was not found question marks are moved to the item
description, and 0 is moved to the unit price.

11Item data is sent to the client by the write function over the SD2 socket. The
return code is equal to the data length if the write function was successful or -1
if it was unsuccessful.

12After the program leaves the infinite loop after the END request, sockets are
closed and the server program ends.

SSERVER program: Error handling
The error handling subprocedure uses the C language functions: errno and
strerror.

PErrorHdlr B

* Error handling subprocedure prototype
D ErrorHdlr Pr
D DumpText 12 Value

* Error handling subprocedure interface
D ErrorHdlr PI
D DumpText 12 Value

C Eval ErrNo@ = GetErrNo 1
C Eval ErrMsg@ = StrError(ErrNo) 2
C DumpText Dump
C CallP Close(SD2)
C CallP Close(SD)
C Eval *InLR = *ON
C Return

PErrorHdlr E

1 GetErrNo function maps to the C function errno. It gets the error number from
the system to the ErrNo variable.

2 The StrError function maps to the C function strerror. It gets the message text
based on the ErrNo variable and places it in the ErrMsg variable.

For our example to run correctly, the SSERVER program must be started first and
then the client SCLIENT is called interactively. If you reverse the order and start
the client first, the client ends abnormally with a dump because it cannot connect
to a socket.
203

Consider the following points:

• If the server program is running interactively and closes its sockets before it
normally ends, the sockets are reused after the server is run again in the
same session.

• While the server and the client are running, you may simulate an abnormal
termination of the client by using the SysRq key, option 2. The server does not
end but waits for data in its read function. If you restart the client later, it never
connects because the server wants to read data and not accept the connect
request. You would have to end the server job and start the job and both
programs again.

• If the server runs in an interactive session and ends abnormally (you can
simulate it by using the SysRq key, option 2), the local socket address remains
locked until the job ends. When you restart the server later in the same
session from the command line, it ends up with the error number 3420,
"Address already in use" (ErrNo and ErrMsg variables). Ending the activation
group QILE with the RCLACTGRP command does not help. You must end the
job (signoff) to unlock the socket address.

An invocation exit program can be written (using the atiexit function) to close
the socket properly after a SysRq 2.

5.5.3.2 The SCLIENT program
To understand the logic of this program better, we break it up into the logical
pieces of data definition and procedure.

SCLIENT program: Data definition
Here is the source listing of program SCLIENT:

H DFTACTGRP(*NO) ACTGRP('QILE') BNDDIR('QC2LE')

* Workstation file to request and display data from the server
FITEMSW CF E WORKSTN

* Necessary procedure prototypes with data definitions
/COPY SCKSRC,SCKCPY

D SocketData E Ds ExtName (ITEMS)
D SockDtaLen S 10I 0 Inz (%Size(SocketData))
D PortNumber S 10I 0 Inz(3005) 1
D SD S 10I 0
D RC S 10I 0

* Server name parameter
D ServerName S 255A Inz('LOCALHOST') 2

* Error handling subprocedure prototype
D ErrorHdlr Pr
D DumpText 12 Value

1 Note that the port number is the same as in the SSERVER program data
definition in 5.5.3.1, “The SSERVER program” on page 200.

2 For this simple test application, we connect to the same local host on which the
server program is also running.

SCLIENT program: Procedure
The client program gets its sockets, obtains an IP address for it, connects to the
server and enters a processing loop where data is exchanged.

* Obtain a socket descriptor
C Eval SD = Socket(AF_INET : SOCK_STREAM : 0)

* If socket failed - End the client program with dump
204 Who Knew You Could Do That with RPG IV?

C If SD < 0
C CallP ErrorHdlr ('ClientSocket')
C Return
C EndIf

* Fill in necessary fields in the IP address structure
C Eval SocketAddr = *ALLX'00' 1
C Eval SinFamily = AF_INET
C Eval SinPort = PortNumber

* Prepare the host name for the GetHostByName function 2
C Eval ServerName = %Trim(ServerName) + X'00'
C Eval Server@ = %Addr(ServerName)

* Get the host address if given the server name
C Eval Host@ = GetHostByName(Server@) 3

* If host name cannot be resolved - End the client program
C If Host@ = *NULL 4
C CallP ErrorHdlr ('ClientHostN')
C Return
C EndIf

* Set the pointer to the host entry data structure
C Eval HostEntData@ = HName@ 5

* Copy the IP address from the host entry structure into
* the server IP address structure
C Eval SinAddr = HAddrArr(1) 6

* Connect to the server
C Eval RC = Connect(SD: 7
C %Addr(SocketAddr) :
C %Size(SocketAddr))
* If connect unsuccessful - End the client program with dump
C If RC < 0
C CallP ErrorHdlr ('ClientConnect')
C Return
C EndIf
* Write/read loop
C DoW 0 = 0

* Request the user to enter an item number
C ExFmt ITEMSW0 8

* If F3 pressed - Leave the loop and end the client
C If *In03 9
C Leave
C EndIf

* Send the item number to the server over the socket
C Eval RC = Write(SD : %Addr(SocketData)
C 10 : SockDtaLen)

* If write failed - End the client program with dump
C If RC < 0
C CallP ErrorHdlr ('ClientWrite')
C EndIf

* If input from the screen was END - End the client program
* (which causes the server to end, too)
C If ITEMNBR = 'END' 11
C Leave
C EndIf

* Read the reply data from the server 12
C Eval RC = Read (SD : %Addr(SocketData) :
C SockDtaLen)

* If read failed - End the client program with dump
C If RC < 0
C CallP ErrorHdlr ('ClientRead')
C Leave
C EndIf

* If no data available from the server -
* - End the server program with dump
C If RC = 0 13
205

C CallP ErrorHdlr ('ClientRead2')
C Leave
C EndIf

* Display data received from the server
C ExFmt ITEMSW1 14

* If F3 pressed - End the client program
C If *In03
C Leave
C EndIf

* End write/read loop
C EndDo

* End the program
C CallP Close(SD)
C Eval *InLR=*On
C Return

1 After obtaining the socket number, SD, the client prepares to get an IP
address of the host (server). The SocketAddr data structure is initialized
by binary zeroes. The AF_INET number and port number are assigned.

2 – 3 The server name and its address (pointer) 2 are parameters for the
GetHostByName function.

4 – 6 If the GetHostByName function is not successful 4, the client program
ends. Otherwise, a pointer to an additional data structure containing an
array of IP addresses is obtained 5, and the first IP address from the array
is moved in the server address structure 6.

7 The connect function requests the server that the SD socket be connected
to the host (by the accept function in the server).

8 – 9 After entering the processing loop, the client shows a display format to get
an item number from the keyboard 8. If the user presses the F3 key, the
client ends up normally 9.

10 The write function sends the item number (or END) to the server.

11 If END was sent, the client ends up normally.

12 The read function receives the reply from the server, which can be the
contents of an item record or question marks (if the server did not find the
record).

13 If the return code of the read function is -1, the client program ends with a
dump. If the return code is 0, no data was received (end of data) and the
client also ends with a dump.

14 Data received from the server is displayed on the workstation. After the
Enter key is pressed, the processing loop is repeated. If the F3 key is
pressed, the client ends normally.
206 Who Knew You Could Do That with RPG IV?

5.5.4 Server SSERVER2 and client SCLIENT2 with recovery
In our first example, we did not include any error recovery capability. The second
example is more robust. In case one of the programs ends abnormally, the other
program does not wait for data in the read operation, but recognizes that the read
function failed. The write function is handled the same way, but the chances are
much less for a failure.

Figure 26 illustrates the recovery process. Solid ovals represent normal
processing without errors. Dotted ovals are loops that are entered in case of a
failure.

Figure 26. Recovery from failures

The actual recovery process is explained here:

1. In the server program, a failure of the accept, read, or write function is solved
by reentering the accept function. The accept function waits for a connect
request from the client.

2. In the client program, a failure of the connect, write, or read functions is solved
by entering a loop where the socket and connect functions alternate. The
socket is closed before the socket function is issued.

The server and client programs are created from the corresponding modules
SSERVER and SCLIENT using the following instructions:

CRTBNDRPG PGM(RPGISCOOL/SSERVER) SRCFILE(RPGISCOOL/SCKSRC)
CRTBNDRPG PGM(RPGISCOOL/SCLIENT) SRCFILE(RPGISCOOL/SCKSRC)

The programs run in the QILE activation group. Prior to compiling the modules,
the physical file ITEMS and display file ITEMSW must have been created, as
described in 5.5.8, “Running the examples” on page 232. You can use the
instructions in the same section to run the program.

Try it yourself

Server

accept

read

write

Client

socket

write

read

connect
207

3. The server now listens to a maximum of 10 clients and allows up to 10 clients
to communicate.

4. If the client’s job is abnormally ended, the server’s read operation fails. The
server recovers from the failure by reissuing an accept function. If the accept
function should itself fail, it is repeated until a connect request comes.

5. The server survives if clients end abnormally in their jobs, or even if their jobs
end.

6. If a client is started before the server is running, its connect function fails. In
this case, the client closes its socket, obtains a new socket, and issues the
connect function. This process is repeated until the connect request is
accepted by the server, or until the client is ended by the user.

7. More than one client can be started (interactively), but only one can be
accepted by the server at a time. The accepted client communicates with the
server as long as it wants. After this client ends, the next client is accepted by
the server.

The recovery process is performed in the SSERVER2 and SCLIENT2 example
programs. These programs are functionally identical to those in 5.5.3, “Example
of a simple server SSERVER and client SCLIENT” on page 200, except for the
recovery. Only the relevant parts of the programs are shown.

5.5.4.1 The SSERVER2 program with recovery
Here are the relevant parts of the source code for the SSERVER2 program:

...

C Eval RC = listen (SD: 10) 1
...

* Recovery loop
C DoW 0 = 0

* Accept incoming connection request from the client.
* A new socket (SD2) is created for the client.
C Eval SD2 = Accept(SD: SockAddr: AddrLen)
C If SD2 < 0

* If accept failed - Repeat it with after a delay
C CallP Sleep(1) 2
C Iter
C EndIf
...

* Read/write loop
C DoW 0 = 0

* Read data from socket
C Eval RC = Read (SDR: SocketData@: SockDtaLen)

* If read failed - Enter recovery loop
C If RC < 0 3
C Leave
C EndIf
...

* Write the record to the client
C Eval RC = Write(SDR: SocketData@: SockDtaLen)

* If write failed - Enter recovery loop
C If RC <= 0 4
C Leave
C EndIf

* End read/write loop
C EndDo
208 Who Knew You Could Do That with RPG IV?

* End recovery loop
C EndDo

1 The program listens at most to 10 clients.

2 If the accept function fails, the program enters a new iteration of the
recovery loop after a 1 second delay.

3 – 4 If a read or write function fails, the program leaves the processing loop and
enters the recovery loop.

5.5.4.2 The SCLIENT2 program with recovery
Here are the relevant parts of the source code for the SCLIENT2 program:

...
* Recovery loop (repeats if any failure occurred)
C DoW 0 = 0 1

* Obtain a socket descriptor
C Eval SD = Socket(AF_INET: SOCK_STREAM: 0)

...

* Connect to the server
C Eval RC = Connect(SD
C : %Addr(SocketAddr)
C : %Size(SocketAddr))

* If connect unsuccessful - Repeat connect with delay
C If RC < 0
C CallP Sleep (1) 2
C Iter
C EndIf

* Write/read loop
C DoW 0 = 0

* Request the user to enter an item number
C ExFmt ITEMSW0

* If F3 pressed - End the client program
C If *In03
C ExSr Terminate
C EndIf

* Send the item number to the server over the socket
C Eval RC = Write(SD : %Addr(SocketData)
C : SockDtaLen)

* If write failed - Enter the recovery loop
C If RC < 0
C Leave 3
C EndIf
...

* Read the reply data from the server
C Eval RC = Read (SD: %Addr(SocketData)
C : SockDtaLen)

* If read failed - Enter the recovery loop
C If RC <= 0
C Leave 4
C EndIf
...

* End read/write loop
C EndDo

* Close the socket before obtaining a new one
C CallP Close (SD) 5

* End recovery loop
C EndDo
209

1 The recovery loop is placed at the beginning of the program. The socket()
function must be repeated if the connection with the server has been lost.

2 If the connect() function fails, the program waits one second and then
enters the new iteration of the recovery loop.

3 – 4 If the write() or read() function fails, the program leaves the processing loop
and enters the recovery loop.

5 The socket is closed at the end of the recovery loop before a new socket is
obtained by the socket() function.

5.5.5 Communication with multiple sockets (multiple I/O)
So far our examples only allow a one to one connection. Only one client talks to a
server at a time. In practice, you will often require a method where the server
communicates with multiple clients at the same time. The select() function "Wait
for events on multiple sockets" can be used to serve this purpose.

5.5.5.1 The select() function (wait for multiple sockets)
The select() function is used to enable an application to multiplex I/O. By using
the select function, an application with multiple interactive I/O sources avoids
blocking on one I/O stream, while the other stream is ready. For example, an
application that receives inputs from two distinct communication endpoints (using
sockets) can use the select function to sleep (wait) until input is available from
either of the sources. When input is available, the application wakes up and
receives an indication as to which descriptor is ready for reading.

The application identifies descriptors to be checked for read, write, and exception
status and specifies a time-out value. If any of the specified descriptors is ready
for the specified event (read, write, or exception), the select function returns, and
indicates which descriptors are ready. Otherwise, the process waits until one of
the specified events occur or the wait times out. The indication is in the form of a
set of bits representing one socket each. The set is called a file descriptor set or
fd_set, because it has the same format for IFS files and is handled the same way.
There are three kinds of file descriptor sets: read_set, write_set, and
exception_set.

A descriptor is returned by the select() function in the bit set specified by read_set
to indicate one of the following events:

• A read request is pending on a socket descriptor. This occurs when a client is
sending data to the server using send() or write() function. In this case, a

The server and client programs are created from the corresponding modules
SSERVER and SCLIENT using the following instructions:

CRTBNDRPG PGM(RPGISCOOL/SSERVER2) SRCFILE(RPGISCOOL/SCKSRC)
CRTBNDRPG PGM(RPGISCOOL/SCLIENT2) SRCFILE(RPGISCOOL/SCKSRC)

The programs run in the QILE activation group. Prior to compiling the modules,
the physical file ITEMS and the display file ITEMSW must have been created,
as described in 5.5.8, “Running the examples” on page 232. You can use the
instruction in the same section to run the program.

Try it yourself
210 Who Knew You Could Do That with RPG IV?

non-listening socket is returned in the bit set specified by read_set. The server
can then issue a recv() or read() function to receive the data.

• A connection request is pending on a socket descriptor. This occurs when a
client is connecting using connect() function. In this case a listening socket is
returned in the bit set specified by read_set. The server can then issue an
accept() function to accept the connection.

• An error event exists on the descriptor. The server should handle the error
condition.

Similar rules hold true for write and exception bit sets.

The select() function has the following prototype:

* int select(int max_descriptor,
* fd_set *read_set,
* fd_set *write_set,
* fd_set *exception_set,
* struct timeval *wait_time)

D Select Pr 10I 0 ExtProc('select')

D MaxDescr 10I 0 Value
D ReadSet * Value
D WriteSet * Value
D ExceptSet * Value
D WaitTime * Value

Table 56 shows the parameters for this function.

Table 56. Parameters for the select() function

The return values are:

-1 Unsuccessful
0 If the time limit expires
n The total number of descriptors in all sets that met selection criteria

The fd_set structure has the following format in the RPG IV language:

D FD_Set Ds

D FDes 10U 0 Dim(7)

FDes (File Descriptor) is an array of unsigned integers, each bit of which
represents one socket. You must specify at least seven because it is the
minimum number required for the set. Such a set represents 224 sockets (32
times 7). Figure 27 on page 212 shows the set.

Argument Description Use RPG data type C data type

max_descriptor Maximum number of a
descriptor counted from 0

Input Integer(10) int

read_set Set of descriptors tested to
be ready for reading

Input Pointer to a
structure

fd_set *

write_set Set of descriptors tested to
be ready for writing

Input Pointer to a
structure

fd_set *

exception_set Set of descriptors tested for
pending exceptions

Input Pointer to a
structure

fd_set *

timeval Wait time in seconds or
microseconds

input Pointer to a
structure

wait_time *
211

Figure 27. Socket descriptor bits in the array of integers

Only the first integer is illustrated in a detailed view. Four description bits are set
to one (1), the others are zeros. Correspondence between bit positions and their
decimal and hexadecimal values is shown in Table 57.

Table 57. Socket description bit values

The sum of the bit values is decimal 27 or hexadecimal X’1B’. You can see such a
number in the memory dump or when debugging the program.

To help manipulate the description sets, additional functions are available. They
are:

FDZero Removes all descriptors from the set.

FDClr Moves descriptor n from the set.

FDSet Adds descriptor n to the set.

FDIsSet Returns a nonzero value if a descriptor is returned in the set.
Otherwise, a zero value is returned.

The functions are realized as subprocedures of the SCKSELF module, which is
bound to the SSERVER3 module to create the SSERVER3 program. They use an
arithmetic method with powers of two (2) to simulate C-language bit operations.

5.5.5.2 Auxiliary functions to manipulate socket description bits
The FDZero function is used to clear the entire set of description bits before the
select function is first used.

*--
* FDZero - Zero all socket descritpion bits in FDes array
* FDes is an array of 7 integers
*--

PFDZero B EXPORT

* FDZero subprocedure prototype
D FDZero Pr
D FDes 10U 0 Dim(7)

Power of 2 Decimal/Hexadecimal Description

20 1/1 Socket number 0

21 2/2 Socket number 1

23 8/8 Socket number 3

24 16/10 Socket number 4

FDes - arrayof long integers

32bits 32bits 32bits . . . 32bits

1 3 7

1 1 1 1

2

... ... 8 7 6 5 4 3 2 1 0

value
position3

1
3
0

212 Who Knew You Could Do That with RPG IV?

* FDZero subprocedure interface
D FDZero PI
D FDes 10U 0 Dim(7)

C Eval FDes = 0

PFDZero E

The FDSet function is used to set the description bit representing the socket you
want to test for incoming connect() or send() requests before the select() function
is issued. You add a bit to your socket description set. The select() function then
sets on (to one) only those bits that represent sockets ready to connect. The
other bits from your set are set off (to zero).

*--
*
* FDSet - Set socket description bit
*
* Parameters:
* FD A socket description number
* FDes An array of 7 integers (socket descriptor bits)
*
* Return value: none
*
*---

PFDSet B EXPORT

* FDSet procedure prototype
D FDSet Pr
D FD 10I 0 Value
D FDes 10U 0 Dim(7)

FDSet procedure interface
D FDSet PI
D FD 10I 0 Value
D FDes 10U 0 Dim(7)

D Idx S 5P 0
D FD32 S 5P 0
D RemFD S 5P 0

* Socket number is divided by 32 (number of bits in intege
* 1 is added because arrays are numbered from 1.

C FD Div 32 FD32
C MvR RemFD
C Eval Idx = FD32 + 1 1

* A bit is set in the integer which represents the socket.
* This is done by adding a power of 2. The exponent is
* the remainder modulo 32.

C If FDIsSet(FD: FDes) = 0
C Eval FDes(Idx) = FDes(Idx) + 2 ** RemFD 2
C EndIf

PFDSet E

1 The socket number is divided by 32 (number of bits in integer). One (1) is
added because arrays are numbered from one.

2 A bit is set in the integer that represents the socket. This is done by adding a
power of two (2). The exponent is the remainder modulo 32.

The FDClr function clears (sets to zero) a socket description bit. It can be used to
remove a socket from your set.

*--
* FDClr - Clear socket description bit
*
* Parameters:
* FD A socket description number
213

* FDes An array of 7 integers (socket descriptor bits)
*
* Return value: none
*
*--
PFDClr B EXPORT

D FDClr Pr
D FD 10I 0 Value
D FDes 10U 0 Dim(7)

D FDClr PI
D FD 10I 0 Value
D FDes 10U 0 Dim(7)

D Idx S 5P 0
D FD32 S 5P 0
D RemFD S 5P 0

* Socket number is divided by 32 (number of bits in integer)
* 1 is added because arrays are numbered from 1.

C FD Div 32 FD32 1
C MvR RemFD
C Eval Idx = FD32 + 1

* A bit is set in the integer which represents the socket.
* This is done by subtracting a power of 2. The exponent is
* the remainder modulo 32.

C If FDIsSet(FD: FDes) > 0 2
C Eval FDes(Idx) = FDes(Idx) - 2 ** RemFD
C EndIf

PFDClr E

1 The socket number is divided by 32 (number of bits in an integer). One (1) is
added because arrays are numbered from one.

2 A bit is set in the integer which represents the socket. This is done by
subtracting a power of two (2). The exponent is the remainder modulo 32.

The FDIsSet function is used after the Select() function completed successfully
and returns a set of sockets (description bits) that are ready to connect or send.
You test whether your specific socket is contained in this set. If it is contained in
the set, you can continue by accepting the connect request or receive data for
this particular socket. You accept a connection for a listening socket; you receive
data for a non-listening socket.

*--
* FDIsSet - Test if a socket description bit is set on
*
* Parameters:
* FD A socket description number
* FDes An array of 7 integers (socket descriptor bits)
*
* Returned integer value:
* 1 - if the bit is set on
* 0 - if the bit is set off
*
*--

PFDIsSet B EXPORT

D FDIsSet Pr 10I 0
D FD 10I 0 Value
D FDes 10U 0 Dim(7)

D FDIsSet PI 10I 0
D FD 10I 0 Value
D FDes 10U 0 Dim(7)

D Idx S 5P 0
214 Who Knew You Could Do That with RPG IV?

D FD32 S 5P 0
D RemFD S 5P 0
D ShiftFD S 5P 0
D ShiftFD2 S 5P 0
D RemShiftFD2 S 5P 0

* Socket number is divided by 32 (number of bits in integer)
* 1 is added because arrays are numbered from 1.

C FD Div 32 FD32
C MvR RemFD
C Eval Idx = FD32 + 1 1

* Shift the bits right by the socket number (remainder modulo 32)

C Eval ShiftFD = FDes(Idx) * 2 ** -RemFD 2

* Return 1 if odd, 0 if even.

C ShiftFD Div 2 ShiftFD2
C MvR RemShiftFD2
C Return RemShiftFd2 3

PFDIsSet E

1 The socket number is divided by 32 (number of bits in integer). One (1) is
added because arrays are numbered from one.

2 Shift the bits right by the socket number (remainder modulo 32). This is done
by dividing the socket bit number by a power of two. The exponent is the
remainder after dividing the socket number by 32.

3 Return one (1) if the result is odd, or zero (0) if it is even.

5.5.6 Example of multiple I/O
This example shows how the server can use the select function to communicate
with multiple clients at the same time. Figure 28 illustrates this configuration. The
data exchange is one way only. A client sends an item number, and the server
prints out the corresponding item record which it finds in a database file. If,
however, the item number is “END”, the client ends and is also disconnected by
the server. If the item number is “ENDSV”, the client ends and the server
disconnects all clients and ends, too. This example can be extended by an
answer message (perhaps an acknowledgement) from the server to the client if
you need two-way communication.

Figure 28. Server accepting multiple clients

Client

Client

Client

Server
215

Figure 29 is a simplified illustration of how the select(), accept(), and recv()
functions are rotated in the server program and how the connect() and send()
functions are arranged in the client programs. The connect() is performed only
once in the client program. The select() function in the server recognizes both
connect() and send() requests.

Figure 29. Repeating socket functions in the server and client programs

The main processing loop (solid oval) begins with select() function which
recognizes all waiting requests from those sockets we specify in FDes array
(readset). The select() function sets corresponding bits in FDes array to one (1)
for sockets that actually made a request (connect() or send() function from
clients). The other bits are cleared (set to zero).

The server program must find out which bits are set to one (1) after the select()
function completed. This is done in the inner loop (dotted oval) where it is
decided for each bit if it corresponds to the listening socket or not. If it is the
listening socket, the accept() function accepts the connect() request. Otherwise,
the recv() function receives data from the send() request.

After the inner loop ends, the original setting of the FDes array is restored so that
it tells the select() function which sockets it should test for activity.

5.5.6.1 Server program SSERVER3 communicating with multiple clients
To understand the logic of this program better, we break it up into the logical
pieces of the data definition and procedure.

The SSERVER3 program: Data definition
Here is the source code for the data definition portion of the program SSERVER3:

* Database items file
FITEMS IF E K DISK
FREPORT O E PRINTER OflInd(*In50) 1

* Necessary procedrure prototypes with data definitions
/COPY SCKSRC,SCKCPY

* Socket data
D SocketData E Ds ExtName (ITEMS)
* Socket data pointer
D SocketData@ S * Inz(%Addr(SocketData))
* Socket data length
D SockDtaLen S 10I 0 Inz(%Size(SocketData))

Client

send

connect

Server

select

recv

accept
216 Who Knew You Could Do That with RPG IV?

* Port number
D PortNumber S 10I 0 Inz(3005)
* Socket description number for the server
D SD S 10I 0
* Socket description number for the client
D SD2 S 10I 0
* Current maximum of active socket numbers
D CurMax S 10I 0 2
* Sockets flags - active/inactive ('1'/'0')
D SckFlags S 1A Dim(20) 3
* Return code for sockets
D RC S 10I 0
* Option name for SetSockOpt function
D OptVal S 10U 0 Inz(1)
* Pointer to the socket description bit set (readset)
D FD_Set@ S * Inz(%Addr(FD_Set)) 4
* Index variables
D I S 10P 0
D J S 10P 0
* Wait time in seconds for select function
D WaitTime Ds
D Seconds 10I 0 Inz(300) 5
D MicroSec 10I 0 Inz(0)

1 The program uses the printer file to print out the item record requested from a
client. Since there are multiple clients, records in the printer file are written in
the sequence in which the individual clients send data. No feedback
information is sent from the server to the clients in this example.

2 We try to keep the set of active sockets possibly minimal. CurMax is the
maximal socket number of all sockets that are currently open (but not
necessarily sending data). Each time a client socket closes, the current
maximum is decremented accordingly.

3 SckFlags is an array of one character elements which can take values “1” or
“0”. They reflect current status of each socket: 1 – active, 0 – inactive. We
register only 20 sockets, but they can be up to 224 (7 x 32 bits in FDes as
defined in the SCKCPY member).

4 Pointer FD_Set@ to the FDSet structure is defined here while FDSet
structure itself (containing FDes array) is copied from the SCKCPY copy
member.

5 WaitTime structure defines the timeout in seconds and microseconds for the
select() function. If no input comes from clients in this time frame, the select()
function ends with return code zero (0) and clears the FDes array.

The SSERVER3 program: Procedure
Here is the source code for the main procedure portion of the program
SSERVER3:

. . . 6

* Clear readset array
C CallP FDZero(FDes) 7
C Eval SckFlags = '0'

* Set on the listening socket in readset and in the flag array
C CallP FDSet(SD: FDes) 8
C Eval SckFlags(SD + 1) = '1'
C Eval CurMax = SD

* Processing loop
C DoW 0 = 0 9

* .Restore readset using the flag array
* Flag '1' sets on, flag '0' sets off
C 0 Do CurMax J 10
C If SckFlags(J + 1) = '1'
217

C CallP FDSet(J: FDes)
C Else
C CallP FDClr(J: FDes)
C EndIf
C EndDo

* .Select the sockets that connect or send data
* (deselect other sockets)
C Eval RC = Select(CurMax + 1 11

: FD_Set@: *NULL: *NULL
C : %Addr(WaitTime))

* .If Select timed out - Restore readset and reenter the loop
* (there is no incoming request waiting)
C If RC = 0 12
C Iter
C EndIf

* .If Select was unsuccessful - End the server program
* (a programming error)
C If RC < 0
C Eval *InLR = *On
C Return
C EndIf

* .Process all incoming requests if Select is successful
C If RC > 0 13

* ..Inspection loop. Inspect all description bits in readset
* up to the current maximum and process those which are set on
C 0 Do CurMax I

* ...If a bit is set on - Process the incoming request
C If FDIsSet(I: FDes) > 0 14

*If the bit represents a listening socket - Accept a Connect
C If I = SD 15

*Try to accept the first client in queue
* and create a new client's socket - SD2
C Eval SD2 = Accept(SD: SockAddr: AddrLen)

*Accept OK - Add the socket to readset
C If SD2 >= 0
C CallP FDSet (SD2: FDes) 16
C Eval SckFlags(SD2 + 1) = '1'

*Set a new current maximum of used sockets
C If SD2 > CurMax 17
C Eval CurMax = SD2
C EndIf

*End of Accept
C EndIf

*Else (if not a listening socket) - Receive an Process data
C Else 18

*Receive data from the current client's socket
C Eval RC = Recv(I: SocketData@
C : SockDtaLen: 0)

*If Recv failed (error) - End the server program
C If RC < 0
C Eval *InLR = *On
C Return
C EndIf

*Recv OK - Process data
C ExSr ProcData 19

* ...End of Accept or Receive (current socket processing)
C EndIf

* ..End of Process incoming request
C EndIf

* ..End of Inspection loop
218 Who Knew You Could Do That with RPG IV?

C EndDo

* .End of Process all incoming requests
C EndIf

* End of Processing loop
C EndDo

6 An introductory sequence is performed first (socket(), SetSockOpt(), bind()
and listen() functions).

7 FDes array (readset) is cleared by the FDZero auxiliary function and
SckFlags array (socket flags) is set to all character zeros (0).

8 The listening socket SD (obtained in the socket() and activated in the listen()
function) is put in FDes and SckFlags. While FDes bits are numbered from
zero, the SckFlags elements are numbered from one. CurMax (current
maximum socket number) is now equal to the listening socket number SD
(usually zero).

9 The main processing loop is entered.

10 At the beginning of the main loop, the readset (FDes array) is restored so that
it reflects the socket flags maintained throughout the program. A “1” character
in SckFlag becomes a one (1) bit in FDes. A “0” character becomes a zero (0)
bit. Auxiliary functions FDSet and FDClr are used to this purpose. Note that
the loop goes from zero (0) to the current maximum socket number CurMax.
(the first time it may be from zero to zero).

11 The select() function is performed for the maximum socket number which is
one greater than the current maximum. This is because a new client that is
not yet included in the current maximum may request connection. The FDSet
structure (addressed by the FD_Set@ pointer) contains the FDes array which
is set the same as the SckFlags (all open sockets). The set always includes
the listening socket as a minimum (so the minimum of CurMax is zero (0)).

12 After the select() function ends, its return code is tested. If it is zero, no
requests from clients were outstanding during the wait time in which case the
readset is completely cleared. The program goes to a new iteration of the
main processing cycle. If the return code is negative, it is a programming
error meaning that the select() found out an invalid socket number in the
readset. A socket number is invalid if it was not opened (by the socket()
function) or if it was closed by the program in the meantime. In this case, the
program is ended.

13 If the return code is positive, it represents the number of active sockets
recognized by the select() function. This number is not used in this example
although it could be used to further optimize the processing cycle by counting
the actually processed sockets and comparing the count to this return code.
The readset now contains at least one active socket with the one (1) bit in
FDes. In the following inner loop (from zero (0) to CurMax through I), the
readset is inspected and all active sockets are processed. The FDIsSet
auxiliary function is used to test whether the socket I is active.

14 If the socket I is active it is processed.

15 If the active socket I is the listening socket SD, the program knows that a
connect request is waiting. The program issues the accept() function, which
creates a new socket (SD2) and also completes a client's connect() function.
219

16 If the accept() function was successful (the return code SD2 was positive or
zero), the new socket SD2 is projected into the readset and into the socket
flags. This ensures that this client will be included in the active set again (its
socket may have been closed in the meantime) or as a brand new client
(socket).

17 If the accepted socket SD2 is greater than the current maximum, it becomes
the current maximum.

18 If the active socket I is not the listening socket, it is processed as a client's
socket sending data. The recv() function receives the data and sets a return
code. If the return code is negative, it is an error and the program is ended.

19 If the return code is positive or zero, the client's send request is processed. A
subroutine is used for this purpose so that the main processing loop is
shorter.

The ProcData subroutine is as follows:

C ProcData BegSr

C Select

* If item number = ENDSV - Close all sockets and end program
C When ITEMNBR = 'ENDSV' 20

* .Close all sockets (disconnecting them)
C 0 Do CurMax J 21
C If SckFlags(J + 1) = '1'
C CallP Close(J)
C EndIf
C EndDo

* .End the server program
C Eval *InLR = *On
C Return

* If item number is END or no data received - Remove socket flag
* and close the socket
C When ITEMNBR = 'END ' Or RC = 0 22
C Eval SckFlags(I + 1) = '0'
C CallP Close(I)

* .If the closed socket was the current maximum -
* - Find the nearest lower active socket
C If I = CurMax And I > 0 23
C Eval J = I - 1
C DoW SckFlags(J + 1) = '0'
C Eval J = J - 1
C EndDo
* .Make the highest active socket current maximum
C Eval CurMax = J
C EndIf

* Process the received data
C Other 24
* .Read corresponding record from the ITEMS file by key
C ITEMNBR Chain ITEMS

* .If record not found - Supply question marks as a response
C If Not %Found
C Eval UNITPR = 0
C Eval ITEMDESC = *All'?'
C EndIf

* .Write a record to the REPORT printer file
C Write ITEMDETAIL

C EndSl

C EndSr
220 Who Knew You Could Do That with RPG IV?

20 If the “item number” received from the client is ENDSV the server must clean
up and end.

21 The cleanup is done so that all active sockets are closed. The program is
then endded.

22 If the “item number” received from the client is END or the return code of the
Recv function is zero (0), the socket I is closed and removed from the socket
flags (I+1st flag will be set to 0).

23 The socket flags array is optimized if the I-th socket is exactly the CurMax.
This one and all 0 sockets under it are discounted. The new current maximum
will be the highest socket number that remains open. It must be at least zero
(0) (the listening socket), if all clients closed.

24 Regular processing of the received data is performed if a normal item number
was received (and the return code from the recv() function was positive).

5.5.6.2 Client program SCLIENT3 to communicate with the server in
multiple jobs
To understand the logic of this program better, we break it up into the logical
pieces of the data definition and procedure.

The SCLIENT3 program: Data definition
Here is the source code for the data definition portion of the program SCLIENT3:

* Workstation file to request and display data from the server
FITEMSW CF E WORKSTN

* Printer output for tracing socket operations
FQSYSPRT O F 120 PRINTER OflInd(*InOA)

* Necessary procedure prototypes with data definitions
/COPY SCKSRC,SCKCPY

* Socket data
D SocketData E Ds ExtName (ITEMS)
* Socket data pointer
D SocketData@ S * Inz(%Addr(SocketData))
* Socket data length
D SockDtaLen S 10I 0 Inz (%Size(SocketData))
* Port number
D PortNumber S 10I 0 Inz(3005)
* Socket description number for the client
D SD S 10I 0
* Return code for sockets
D RC S 10I 0
* Option name for SetSockOpt function
D OptVal S 10U 0 Inz(1)
* Server IP address in dotted form
D ServerAddr S 15A Inz('127.0.0.1') 1

1 The host is now identified by the IP address in dotted form instead of a host
name (using the gethostbyname() function) as we did in our previous
examples. This method is used when the IP address is stable and you do not
have to rely on the host table or a domain name server. Searching for the
host name may take quite a long time depending on the size and placing of
the table. Resolution from the dotted form to the binary form is fast.

The SCLIENT3 program: Procedure
Here is the source code for the main procedure portion of the program
SCLIENT3:
221

. . . 1

* Connect to the server
C Eval RC = Connect(SD: %Addr(SocketAddr) 2
C : %Size(SocketAddr))

* If Connect unsuccessful - End the client program
C If RC < 0
C ExSr Terminate
C EndIf

* Processing loop
C DoW 0 = 0 3

* Request the user to enter an item number
C ExFmt ITEMSW0 4

* If F3 pressed - End the client program
C If *In03
C ExSr Terminate
C EndIf

* Send the item number to the server over the socket
C Eval RC = Send(SD: %Addr(SocketData) 5
C : SockDtaLen: 0)

* If Send failed - End the client program
C If RC < 0
C ExSr Terminate
C EndIf

* If "item number" was END - End the client program
* (ENDSV - End also the server program)
C If ITEMNBR = 'END' Or ITEMNBR = 'ENDSV' 6
C ExSr Terminate
C EndIf

* End of Processing loop
C EndDo

*---
* Terminate the client program
*---

C Terminate BegSr
C CallP Close(SD)
C Eval *InLR = *On
C Return
C EndSr

1 The introductory sequence of socket operations is performed: socket()
(obtaining the socket SD), SetSockOpt(), and bind() (which is optional).

2 The connect() function is performed trying to connect to the server (the
select() function in the server should recognize it). If the connect() function
fails (for example, when the server is not yet started), the socket SD is closed
and the client program is terminated.

3 The processing loop is entered.

4 The ITEMSW0 format is written on the display. The user enters data (an item
number, or END, or ENDSV) or presses the F3 key. If the F3 key is pressed,
the socket SD is closed and the client program is terminated.

5 The send() function sends data entered to the server. If the return code is
negative, an error occurred. The socket SD is closed and the client program is
terminated.

6 If data entered was END or ENDSV, the socket SD is closed and the client
program is terminated.
222 Who Knew You Could Do That with RPG IV?

5.5.7 Server and client using non-blocking mode
If you do not want the server to wait for client data for a long time, you can relieve
it to process other functions in the meantime (for example, exchange short polling
and acknowledgement messages between the server and the client). You can
use the non-blocking mode of operation for this purpose.

Normally, when the read or write functions are temporarily unable to read or write
data, they wait until the data arrives. They are said to block. This is typical for the
read function. The write function does not normally block. Blocking the read
function can be interrupted by either of the following events:

• The program or the job is abnormally ended.

• The client’s job that is connected to the socket for which the read function is
waiting is ended. Ending the client program while the job keeps running is not
enough.

Creating the programs:

The server and client programs are created from the corresponding modules
SSERVER3 and SCLIENT3, only SSERVER3 binding the module SCKSELF by
copy. This is done by the CL programs SSERVER3B and SCLIENT3B.

Program SSERVER3B creates both modules and binds them into the
SSERVER3 program:

CRTRPGMOD MODULE(SSERVER3) SRCFILE(SCKSRC) SRCMBR(SSERVER3)

CRTRPGMOD MODULE(SCKSELF) SRCFILE(SCKSRC) SRCMBR(SCKSELF)

CRTPGM PGM(SSERVER3) MODULE(SSERVER3 SCKSELF) BNDDIR(QC2LE) ACTGRP(QILE)

Program SCLIENT3B creates the SCLIENT3 program directly using the
CRTBNDRPG command:

CRTBNDRPG PGM(SCLIENT3) SRCFILE(SCKSRC) +
SRCMBR(SCLIENT3) DFTACTGRP(*NO) BNDDIR(QC2LE)

Both programs run in the QILE activation group.

The programs contain one more printer file, QSYSPRT, for tracing individual
socket operations. It is set by calling the subprocedure EventLog. You can
observe how the communication between the server and several clients
proceeds when you run the programs.

Running the programs:

The SSERVER3 program is best submitted as a batch job, the SCLIENT3
program is called from the command line in several sessions after the server
has been started. You end a client by sending END item number or pressing
the F3 key. If you send the ENDSV item number, the server is ended and all
clients discontinued.

Try it yourself
223

The functions that can be used to set the non-blocking mode are:

fcntl Performs various actions on open descriptors. It can set a mode of
input/output operations to a socket.

ioctl Performs control functions (requests) on a file descriptor.

We use the fcntl function in the example programs because it has a simpler
interface.

5.5.7.1 The fcntl() function to set non-blocking I/O mode
The fcntl() function performs various actions on open descriptors. For example, it
sets the non-blocking mode. If the fcntl() function sets the socket I/O mode to
non-blocking, the read function always returns immediately. If data is available. it
is read but the function will not wait. The program can test the result of the
operation. There are three possible alternatives:

• Data is available and the program can continue processing.

• Data is not yet available because it is blocked for some reason. The program
should repeat the read function one or more times to get the data.

• The read function does not deliver data even after several trials, in which case
the program should close the socket description and start processing from the
beginning (for example, obtain a new socket).

The prototype for the fcntl() function is as follows:

* int fcntl(int file_descriptor, int cmd, int argument);

D FCntl Pr 10I 0 Extproc('fcntl')

D 10I 0 Value
D F_SETFL 10I 0 Value
D O_NONBLOCK 10I 0 Value Options(*Nopass)

Table 58 shows the parameters for this function.

Table 58. Parameters for the Fcntl function

The return values are:

-1 Unsuccessful
0 Successful

The parameter values are:

F_SETFL A command to set the file or socket parameters. The value is
actually 7.

O_NONBLOCK A value (a bit) required to be set for the socket to be in the
non-blocked mode. The value is actually 128 decimals (200
octal and 80 hexadecimal).

Argument Description Use RPG data type C data type

file_descriptor Socket descriptor Input Integer(10) int

cmd Command to be performed Input Integer(10) int

argument Optional parameter needed
by certain commands

Input integer(10) int
224 Who Knew You Could Do That with RPG IV?

We use the fcntl function in the following example to show how both the server
and client programs can recover from a failure.

5.5.7.2 Server program SSERVER4 using fcntl() to recover from failure
The server program performs the same function as in our first example. It
receives an item number from the client, finds the data record, and sends it to the
client. If the server ends for some reason (normally or abnormally), it can be
restarted so that it accepts all pending requests from the client. If the server
receives the item number "END", both the server and client end.

The server program is composed of a main procedure, which calls subprocedures
for reading and writing data with recovery. The subprocedures are placed in a
separate module SCKRDWR.

The SSERVER4 program: Data definition
Here is the source code for the data definition portion of the program SSERVER4:

H DFTACTGRP(*NO) ACTGRP('QILE') BNDDIR('QC2LE')

* Database items file
FITEMS IF E K DISK

D SocketData E Ds ExtName (ITEMS)
D SocketData@ S * Inz(%Addr(SocketData))
D SockDtaLen S 10I 0 Inz(%Size(SocketData))
D PortNumber S 10I 0 Inz(3005)
D SD S 10I 0
D SD2 S 10I 0
D RC S 10I 0
D OptVal S 10U 0 Inz(1)

* Necessary procedure prototypes with data definitions
/COPY SCKSRC,SCKCPY

* ReadSocket subprocedure prototype 1
D ReadSocket Pr 10I 0
D SD 10I 0 Value
D SockData@ * Value
D SockDtaLen 10I 0 Value
D Retry 10I 0 Value

* WriteSocket subprocedure prototype 2
D WriteSocket Pr 10I 0
D SD 10I 0 Value
D SockData@ * Value
D SockDtaLen 10I 0 Value
D Retry 10I 0 Value

* Error handling subprocedure prototype 3
D ErrorHdlr Pr
D DumpText 12 Value

1 The server program calls three subprocedures. The ReadSocket
subprocedure reads data from the client’s socket and recovers from error
messages.

2 The WriteSocket subprocedure writes data to the client’s socket and recovers
from error messages.

3 ErrorHdlr handles error messages on demand from the main procedure.

The SSERVER4 program: Procedure
Here is the source code for the main procedure portion of the program
SSERVER4:

* Recovery loop
C DoW 0 = 0 1

* Obtain a socket descriptor for itself
225

C Eval SD = Socket(AF_INET: SOCK_STREAM: 0)

* Allow socket description to be reusable
C Eval RC = SetSockOpt(SD: SOL_SOCKET
C : SO_REUSEADDR
C : %Addr(OptVal)
C : %Size(OptVal))

* Bind the socket to an IP address
C Eval SocketAddr = *LOVAL
C Eval SinFamily = AF_INET
C Eval SinPort = PortNumber
C Eval SinAddr = INADDR_ANY
C Eval RC = Bind (SD: %ADDR(SocketAddr)
C : %SIZE(SocketAddr))

* Listen to 1 client only
C Eval RC = listen (SD: 1) 2

* Accept incoming connection request from the client.
* A new socket (SD2) is created for the client. 3
C Eval SD2 = Accept(SD: SockAddr: AddrLen)

* If accept failed - Repeat it after a delay
C If SD2 < 0
C CallP Sleep(1) 4
C CallP Close(SD2)
C CallP Close(SD)
C Iter
C EndIf

* Allow client socket description to be reusable
C Eval RC = SetSockOpt(SD2: SOL_SOCKET
C : SO_REUSEADDR
C : %Addr(OptVal)
C : %Size(OptVal))

* Set nonblocked mode for the socket 5
C Eval RC = FCntl(SD2: F_SETFL: O_NONBLOCK)

* Read/write loop
C DoW 0 = 0 6

* Read data from socket 7
C Eval RC = ReadSocket(SD2: SocketData@
C : SockDtaLen: 5)

* If read failed - Enter recovery loop
C If RC <= 0
C CallP Close(SD2) 8
C CallP Close(SD)
C Leave
C EndIf

* If item number is END - End the server normally
C If ITEMNBR = 'END'
C CallP Close (SD2)
C CallP Close (SD)
C Eval *InLR = *On
C Return
C EndIf

* Read the corresponding record from the parts file by key
C ITEMNBR Chain ITEMS
C If Not %Found

* If record not found send question marks to the client
C Eval UNITPR = 0
C Eval ITEMDESC = *All'?'
C EndIf

* Write the record to the client
C Eval RC = WriteSocket 9
C (SD2: SocketData@: SockDtaLen: 5)

* If write failed - Enter recovery loop
C If RC < 0 10
C CallP Close(SD2)
226 Who Knew You Could Do That with RPG IV?

C CallP Close(SD)
C Leave
C EndIf

* End read/write loop
C EndDo

* End recovery loop
C EndDo 11

1 The server enters the recovery loop from the beginning. In case of a
failure, the whole procedure of obtaining a new socket, binding it etc., is
repeated.

2 The server listens to one client only.

3 – 4 The accept function creates a client’s socket 3. In case of a failure, both
sockets are closed, and after a one second delay, the recovery loop is
entered 4. The sleep function is very simple. Its prototype can be found in
the SCKCPY /COPY member.

5 After making the new socket description reusable, the fcntl function sets
the non-blocking mode to the SD2 socket.

6 The read/write loop is entered and processes the server transactions with
the client. This loop is repeated until an error in the ReadSocket or
WriteSocket functions occurs or the user ends the processing from the
client (by sending an END item number).

7 The ReadSocket function is performed. It has the same parameters as the
read function with the last parameter specifying that it should retry five
times in case of error.

8 If the ReadSocket function fails, both sockets are closed and the recovery
loop is reentered.

9 – 10 The WriteSocket function is performed. The last parameter specifies that it
should retry five time in case of error 9. If the WriteSocket function fails 10,
both sockets are closed and the recovery loop is re-entered.

11 The last statement of the main procedure is the end of the recovery loop.

The SSERVER4 program: ReadSocket and WriteSocket subprocedures
Two subprocedures, ReadSocket and WriteSocket, are identical except for the
read or write functions. They serve several purposes:

• Because the read() (or write) function does not wait for data but returns
immediately, a test is made for the error code if it is EWOULDBLOCK,
regardless of the value in the return code. This code means that data is not
yet available but it will be available later. If it was not for the fcntl() function
that set the non-blocking mode, the read() function would have waited for the
data.

• If the error code is EWOULDBLOCK, the function is repeated after some delay
as long as the error code does not change.

• When the error code changes, the inner loop exits and the outer loop is
entered. The loop is repeated a predefined number of times (five in our
example). If no data is read after five loops, -1 is returned to the caller.
Otherwise, the length of data read (written) is returned.

• For some reason, if the program or the procedure fails, the error number and
text are available in the corresponding global variables (defined in the
SCKCPY /COPY member).
227

The error code is made available by the GetErrNo() function, which is a
remapped __error() C function. The GetErrNo() function gets access to the ErrNo
variable through a pointer. The ErrNo variable contains the error code. Before
issuing any function that returns an error code, the ErrNo variable should be
cleared. However, it is possible only after the GetErrNo() function was performed.
If the error code is not cleared before the function is entered, the resulting error
code may be false.

*--
* ReadSocket - Read socket with recovery
*--

PReadSocket B

* ReadSocket subprocedure prototype
D ReadSocket Pr 10I 0
D SD 10I 0 Value
D SockData@ * Value
D SockDataLen 10I 0 Value
D Retry 10I 0 Value

* ReadSocket subprocedure interface
D ReadSocket PI 10I 0
D SD 10I 0 Value
D SockData@ * Value
D SockDataLen 10I 0 Value
D Retry 10I 0 Value

D RC S 10I 0

C Do Retry 1

C Eval ErrNo@ = GetErrNo 2
C Eval ErrNo = 0 3

C Eval RC = Read (SD: SockData@: SockDataLen)
C Eval ErrNo@ = GetErrNo 4
C Eval ErrMsg@ = StrError(ErrNo)

C DoW ErrNo = EWOULDBLOCK 5

C CallP Sleep (1) 6

C Eval RC = Read (SD: SockData@: SockDataLen)
C Eval ErrNo@ = GetErrNo 7
C Eval ErrMsg@ = StrError(ErrNo)

C EndDo

C If RC > 0
C Return RC 8
C EndIf

C EndDo

C Return RC 9

PReadSocket E

1 The procedure enters the retry loop that runs at most Retry times. Retry is a
parameter that specifies the maximum number of iterations.

2 – 3 Before the read function is issued the ErrNo variable should be cleared 3. It
is possible only after the GetErrNo function was performed. The GetErrNo
function gets access to the ErrNo variable through a pointer 2.

4 The GetErrNo function is performed again after the read function ended.
The read function ends immediately because it runs in non-blocking mode.
ErrNo variable now contains an error code. Error code 0 means that the
operation was successful. Other codes are errors. The GetErrMsg function
228 Who Knew You Could Do That with RPG IV?

is optional. It is good to see the text of the error message in a dump or
when debugging the program.

5 The error code is tested if it is EWOULDBLOCK, which is actually the
number 3406. If so, it means that the read function would block if running in
blocking mode (as if the fcntl function were not performed). In this case, a
loop is entered and is repeated as long as the error code is
EWOULDBLOCK.

6 A one second delay is performed so that the read function cannot repeat
too fast.

7 The read function is issued again and the GetErrNo function immediately
after. It is to get a new value of the error number.

8 When the error number changes, the inner loop is left and a test is made if
the return code is positive (success in reading data). If positive, the return
code value is returned to the caller and the subprocedure ends.

9 If the return code was negative or zero, the outer loop is reentered until the
number of retries is exhausted. After that, if the return code is still negative
or zero, the subprocedure returns to the caller with this code.

Note that if the data to be read is immediately available, no loop is completed, the
first read function reads the data and the procedure returns with the positive
return code 6 immediately.

The WriteSocket procedure is literally the same as the ReadSocket procedure,
except that it uses the write function.

5.5.7.3 Client program using fcntl() to recover from a failure
The client program performs the same function as in our first example. It sends
an item number to the server and receives the data record, which it displays on
the screen. This time the client can be started before the server and wait. If the
client ends for some reason (normally or abnormally), it can be restarted. If the
client sends the "END" item number, both the client and the server end.

The client program is composed of a main procedure which calls subprocedures
for reading and writing data with recovery. The subprocedures are placed in a
separate module SCKRDWR.

The SCLIENT4 program: Data definition
Here is the source code for the data definition portion of the program SCLIENT4:

H DFTACTGRP(*NO) ACTGRP('QILE') BNDDIR('QC2LE')

* Workstation file to request and display data from the server
FITEMSW CF E WORKSTN

* Necessary procedure prototypes with data definitions
/COPY SCKSRC,SCKCPY

* ReadSocket subprocedure prototype
D ReadSocket Pr 10I 0
D SD 10I 0 Value
D SockData@ * Value
D SockDtaLen 10I 0 Value
D Retry 10I 0 Value

* WriteSocket subprocedure prototype
D WriteSocket Pr 10I 0
D SD 10I 0 Value
D SockData@ * Value
D SockDtaLen 10I 0 Value
229

D Retry 10I 0 Value

D SocketData E Ds ExtName (ITEMS)
D SockDtaLen S 10I 0 Inz (%Size(SocketData))
D PortNumber S 10I 0 Inz(3005)
D SD S 10I 0
D RC S 10I 0

D ServerAddr S 15A Inz('127.0.0.1')

* Error handling subprocedure prototype
D ErrorHdlr Pr
D DumpText 12 Value

The SCLIENT4 program: Main procedure
Here is the source code for the main procedure portion of the program
SCLIENT4:

* Recovery loop
C DoW 0 = 0 1

* Obtain a socket descriptor
C Eval SD = Socket(AF_INET: SOCK_STREAM: 0) 2

* Allow socket description to be reusable 3
C Eval RC = SetSockOpt(SD: SOL_SOCKET
C : SO_REUSEADDR
C : %Addr(OptVal)
C : %Size(OptVal))

* Fill in necessary fields in the IP address structure
C Eval SocketAddr = *ALLX'00'
C Eval SinFamily = AF_INET
C Eval SinPort = PortNumber

* Copy the IP address from the host entry structure into
* the server IP address structure
C Eval SinAddr = InetAddr(%Addr(ServerAddr)) 4

* Connect to the server
C Eval RC = Connect(SD: 5
C %Addr(SocketAddr):
C %Size(SocketAddr))

* If connect unsuccessful - Enter recovery loop
C If RC < 0
C CallP Close(SD) 6
C CallP Sleep(1)
C Iter
C EndIf

* Set nonblocked mode for the socket
C Eval RC = FCntl(SD: F_SETFL: O_NONBLOCK) 7

* Write/read loop
C DoW 0 = 0 8

* Request the user to enter an item number
C ExFmt ITEMSW0

* If F3 pressed - Leave the loop and end the client
C If *In03
C CallP Close(SD)
C Eval *InLR = *On
C Return
C EndIf

* Send the item number to the server over the socket
C Eval RC = WriteSocket(SD: %Addr(SocketData)
C : SockDtaLen: 5)

* If write failed - Enter recovery loop
C If RC < 0
C Callp Close(SD) 9
C Leave
C EndIf
230 Who Knew You Could Do That with RPG IV?

* If input from the screen was END - End the client program
C If ITEMNBR = 'END'
C Callp Close(SD)
C Eval *InLR = *On
C Return
C EndIf

* Read the reply data from the server
C Eval RC = ReadSocket(SD: %Addr(SocketData)
C : SockDtaLen: 5)

* If read failed - End the client program with dump
C If RC <= 0
C Callp Close(SD) 10
C Leave
C EndIf

* Display data received from the server
C ExFmt ITEMSW1

* If F3 pressed - End the client program
C If *In03
C Leave
C EndIf

* End write/read loop
C EndDo

* End recovery loop
C EndDo 11

1 The client enters the recovery loop from the beginning.

2 – 5 The Socket 2, setsockopt 3, inetaddr 4, and connect 5 functions are
performed to connect a new socket to the server. The setsockopt function
ensures that the same SD number will be used for socket descriptor.

6 The connect function will fail if the server is not running. In this case, after
a one second delay, the socket is closed, and the recovery loop is
reentered.

7 The fcntl function sets non-blocking mode for the SD socket. This mode
holds until the socket is closed.

8 The write/read loop is entered. It is repeated until a read or write error
occurs or the user ends the program (by sending the END item or pressing
the F3 key).

9 – 10 If a write 9 or read 10 error occurs (for example, the server ended), the
socket is closed and the recovery loop is entered.

11 The last statement in the main procedure is the end of the recovery loop.
231

5.5.8 Running the examples
You can try running the examples directly or by compiling the source code on
your AS/400 system, provided that you have the RPGISCOOL library installed.

You can use the following commands to execute the programs SSERVER and
SCLIENT:

CALL PGM(RPGISCOOL/SSERVER) interactively in one session or
SBMJOB CMD(CALL PGM(RPGISCOOL/SSERVER)) JOB(SSERVER) in batch
and
CALL PGM(RPGISCOOL/SCLIENT) in another session

You can use the following commands to execute the programs SSERVER2 and
SCLIENT2:

CALL PGM(RPGISCOOL/SSERVER2) interactively in one session or
SBMJOB CMD(CALL PGM(RPGISCOOL/SSERVER2)) JOB(SSERVER2) in batch
and
CALL PGM(RPGISCOOL/SCLIENT2) in another session

You can use similar commands to execute the programs SSERVER3, SCLIENT3,
and SSERVER4, SCLIENT4. Note that SCLIENT2 and SCLIENT3 can be called
in more than one session to test multiple clients.

All examples enable the ending of the client when you press the F3 key or send
the item number "END" to the server. Then, the server ends whether it is running
in batch or interactive mode. The client that sent the "END" item number ends,

The server and client programs are created from the corresponding modules
SSERVER4 and SCLIENT4 binding the module SCKRDRW by copy. This is
done by the CL programs SSERVER4B and SCLIENT4B.

Program SSERVER4B creates both modules and binds them into the
SSERVER4 program:

CRTRPGMOD MODULE(SSERVER4) SRCFILE(SCKSRC) SRCMBR(SSERVER4)

CRTRPGMOD MODULE(SCKRDRW) SRCFILE(SCKSRC) SRCMBR(SCKRDRW)

CRTPGM PGM(SSERVER4) MODULE(SSERVER4 SCKRDRW)
BNDDIR(QC2LE) ACTGRP(QILE)

Program SCLIENT4B creates both modules and binds them into the SCLIENT4
program:

CRTRPGMOD MODULE(SCLIENT4) SRCFILE(SCKSRC) SRCMBR(SCLIENT4)

CRTRPGMOD MODULE(SCKRDRW) SRCFILE(SCKSRC) SRCMBR(SCKRDRW)

CRTPGM PGM(SCLIENT4) MODULE(SCLIENT4 SCKRDRW)
BNDDIR(QC2LE) ACTGRP(QILE)

The programs run in the QILE activation group.

Try it yourself
232 Who Knew You Could Do That with RPG IV?

too. the other clients (if any) may wait in the EXFMT operation. If you want, you
can create the programs by using the following commands:

CRTBNDRPG PGM(RPGISCOOL/SSERVER) SRCFILE(RPGISCOOL/SCKSRC) SRCMBR(SSERVER)
CRTBNDRPG PGM(RPGISCOOL/SCLIENT) SRCFILE(RPGISCOOL/SCKSRC) SRCMBR(SCLIENT)

You can use similar commands for the SSERVER2, SCLIENT2 couple.

For creation of the programs SSERVER3, SCLIENT3 and SSERVER4,
SCLIENT4, there are CL programs SSERVER3B, SCLIENT3B and SSERVER4B,
SCLIENT4B that create modules and bind them into the programs.

You can compile the files used in the examples: the ITEMS database file,
ITEMSW display file, and REPORT printer file. Their source members are
contained in the SCKSRC source file in the RPGISCOOL library and can be
found in the following sections.

5.5.8.1 Physical file ITEMS definition and contents
Here is the definition of the physical file ITEMS:

* ITEMS from SCKSRC in RPGISCOOL
*
* Item master file

A UNIQUE
A R ITEMSR
* Item number
A ITEMNBR 5 COLHDG('Item' 'number')
* Unit price
A UNITPR 9 2 COLHDG('Unit' 'price')
* Item description
A ITEMDESC 50 COLHDG('Item description')

* Key field
A K ITEMNBR

The physical file object can be created with the following command:

CRTPF FILE(RPGISCOOL/ITEMS) SRCFILE(RPGISCOOL/CSKSRC)

You can use the following file contents for re-creating our example:

Item Unit Item description
number price
00001 26.78 First item
00002 53.59 Second item
00003 80.38 Third item

5.5.8.2 Display file ITEMSW
Here is the definition of the display file ITEMSW:

**
* ITEMSW from SCKSRC in RPGISCOOL
*
* ITEMSW - Workstation file to access ITEMS DB file
**
A DSPSIZ(24 80 *DS3)
A REF(RPGISCOOL/ITEMS)
A CA03(03 'End')
* Format to enter item number
A R ITEMSW0
A 3 2'Enter an item number and press Ent-
A er.'
A DSPATR(HI)
A 5 2'Item number....:'
A ITEMNBR R B 5 20
233

A 23 2'F3=Exit'
A COLOR(BLU)
* Format to show item record data
A R ITEMSW1
A 5 2'Item number....:'
A DSPATR(HI)
A ITEMNBR R O 5 20
A 6 2'Unit price.....:'
A DSPATR(HI)
A UNITPR R O 6 20EDTCDE(K)
A 7 2'Item description:'
A DSPATR(HI)
A ITEMDESC R O 7 20
A 23 2'F3=Exit'
A COLOR(BLU)
A 80 24 2'Server does not response'
A DSPATR(HI)

The Display file object can be created using the following command:

CRTDSPF FILE(RPGISCOOL/ITEMSW) SRCFILE(RPGISCOOL/CSKSRC)

5.5.8.3 Printer file REPORT
Here is the definition of the printer file REPORT:

* Member REPORT from ILESRC in RPGISCOOL
*
* REPORT - List of items

A REF(ITEMS)

A R ITEMDETAIL SPACEA(1)
A ITEMNBR R 2
A UNITPR R +2 EDTCDE(Q)
A ITEMDESC R +2

A R EOFLINE SPACEA(1)
A EOFTEXT 50 2

This printer file object can be created with the following command:

CRTPRTF FILE(RPGISCOOL/REPORT) SRCFILE(RPGISCOOL/CSKSRC)

5.5.9 More information about sockets programming in RPG IV
The essential information on sockets is contained in the following manuals:

• OS/400 Sockets Programming V4R4, SC41-5422
• OS/400 UNIX-Type APIs V4R4, SC41-5875

These manuals assume that the socket functions are written in the C language,
but more specifically in the ILE C/400 language. No manuals are available so far
for RPG IV programmers that want to use sockets in their programs until this one.

The C prototypes and named constants used in the socket functions can be found
in the QSYSINC library, H source file.

On the other end of the application programming spectrum is Net.Commerce,
which enables the sophisticated programmer to do e-business. The redbook
Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New
Millennium, SG24-5198, will help you here.
234 Who Knew You Could Do That with RPG IV?

5.6 Writing CGI programs using RPG IV

An HTTP server responds to a browser’s request by sending static or dynamic
documents. Often there is a need to allow the readers of an HTML document to
return information back to the server, or allow the readers to retrieve dynamically
certain kinds of information from the server. This request can be realized by using
special programs that cooperate with the server.

The mechanism that defines the rules for communication between HTTP server
and such programs is called a Common Gateway Interface (CGI). A programmer
creates a gateway program and stores it in a library. A user of a Web page calls
the gateway program using the link from the Web page. The HTTP server starts
the gateway program, which executes and returns the results to the user.

The basic steps for calling a CGI programs are illustrated in Figure 30 and
described in the list that follows.

Figure 30. Basic steps when using the CGI program

1 The server sends an HTML form to the Web client. This form contains an
action URL that points to a CGI program located somewhere on the network.

2 The browser sends a request to the server. This request contains a Uniform
Resource Locator (URL) with the path and name of the CGI program, along
with all input data, entered by the user.

3 The server looks for the CGI program and passes all input data to it. This can
be done in two different ways depending on the method (GET or POST) used
by the form.

4 The server executes the CGI program, which can call other programs and
access a database file without restrictions.

The Common Gateway Program
passes output from other

programs plus any additional
information back to server

Browser AS/400Server

Browser requests a URL from the
server passing parameters filled

in from the form

Server passes information
back to browser

The common Gateway
program operates, calling

other programs if necessary

Browser formats and
displays the

information it receives

Other
programs/
/dabatases

The requested URL is a
program; server executes the

program and passed
parameters from form either by

POST or GET method

Common
Gateway
Program

2

3

5

6

4

7

1
HTML form sent to browser
which includes action URL
235

5 As result of its execution, the CGI program creates output in the form of an
HTML document and sends it to the server. This is done by writing to standard
output (STDOUT).

6 The server forwards the received information to the browser. This is usually in
the form of an HTML document, but can be also redirected to another HTML
document.

7 Finally, the browser receives this information and displays it to the user.

To do all of this, a set of standards has been set to define the methods for
passing input data from the HTTP server to the CGI program, and how output
data from the CGI program must be formatted to be accepted by the server.

5.6.1 HTML form document
The FORM tag in the HTML document is one of the more popular ways of
prompting for information and identifying the CGI application that will handle the
user input. An HTML document with a FORM tag is shown in the following
example:

<html>
<head>
<title>Registration Form</title>
</head>
<body bgcolor="#F8F8FF">
<h1>Ordering an IBM System AS/400</h1>
<p>Please fill in the following:
<form method="POST" action="/cgibin/cgiprog"> 1
Name:

<input type="TEXT" name="NAME" size=30 maxlength="40" clear="ALL"> 2
<p>
City:

<input type="TEXT" name="CITY" size=30 maxlength="40" clear="ALL"> 2
<p>
Street:

<input type="TEXT" name="STREET" size=30 maxlength="40" clear="ALL"> 2
<p>
 Which AS/400 would you like to order?

<input type="RADIO" name="TYPE" value="P1" checked>Portable 2
<input type="RADIO" name="TYPE" value="P2">Server
<input type="RADIO" name="TYPE" value="P3">System
<p>
 Do you want the Support Line Service?

<input type="RADIO" name="SERV" value="T" checked>Yes 2
<input type="RADIO" name="SERV" value="F">No
<p>
Please order:
<p>
<input type="SUBMIT" value="Order"> 3
<input type="RESET" value="Clear Form">
</form>
<p>
</body>
</html>

A Form document basically consists of three elements:

The URL specifies the name of the server on the Internet, and location of
requested resources, such as a CGI program. It looks similar to this example:

protocol://server_name:port/path_name/(?parameters)

The URL
236 Who Knew You Could Do That with RPG IV?

1 The Form tag’s method can be either GET or POST. The ACTION keyword
defines the name of a CGI program to be called and the logical path to this
program.

2 The Input tags define the input capable fields on the form document. THe text
fields NAME, CITY, and STREET and the radio buttons TYPE and SERV are
used to transfer input data entered by the user to the CGI program.

3 The Submit and Reset buttons are used to submit the order or to clear data
already entered into the Form document.

When the Web browser displays this HTML Form document, it looks similar to the
example Figure 31. We filled in the fields as you would complete the form.

Figure 31. HTML form document displayed by the Web browser

After pressing the button on the Form document to submit it, the input data from
the Form document is sent to the CGI program identified by the action keyword.
To find this program, the HTTP server looks in the HTTP configuration file for the
following directives:
237

Pass /democgi /QSYS.LIB/RPGISCOOL.LIB/CGISRC.FILE/CGIHTML.MBR
Exec /cgibin/* /QSYS.LIB/RPGISCOOL.LIB/*.PGM

The Pass directive maps the name democgi with the member CGIHTML in the
source file CGISRC in the library RPGISCOOL. This member contains the Form
document described earlier. The directive allows access and display of the Form
document when a user enters the following URL:

http://server-name/democgi

The Exec directive maps the logical path /cgibin to the real library
RPGISCOOL.LIB, where the CGI program is stored. On the AS/400 system, CGI
programs must be stored in the QSYS.LIB file system.

There are two methods that you can use to access data from HTML forms. They
use different techniques to encode input data. The two methods are:

GET The CGI program receives input data in the environment variable
QUERY_STRING.

POST The CGI program receives input data from Standard Input (stdin).

POST is the method recommended for sending data to the CGI programs. The
reason is that the length of the environment variable QUERY_STRING, which is
used by the GET method, can be limited in length on some server platforms. In
some cases, this can cause a loss of data. In the POST method, all data is
passed through stdin, and there is no length limitation.

The main advantage of using the GET method is that you can access the CGI
program using a form.

For more information on this topic, refer to the redbook Cool Title About the
AS/400 and Internet, SG24-4815.

5.6.2 Introduction to a service program to aid CGI programing
To write CGI programs with RPG IV, we need support to access environment
variables like QUERY_STRING, read from a standard input stream, and write to a
standard output stream. This support is available through several APIs included
in the service programs.

The old version of the service program, available before V4R3, is QTMHCGI in
the library QTCP. The new version of this service program, available from V4R3,
is QZHBCGI in the library QHTTPSVR.

The Pass directive shown is not a good example because it would work only for
the one page. This pass statement, would allow all members in the CGISRC
file to be passed to the browser:

Pass /democgi /QSYS.LIB/RPGISCOOL.LIB/CGISRC.FILE/*

Also note that any time you make changes to the HTTP server configuration
file, you must restart the server for the changes take effect.

Note
238 Who Knew You Could Do That with RPG IV?

The service program QZHBCGI in library QHTTPSVR contains the following
seven APIs:

• Get Environment Variable (QtmhGetEnv) API
• Put Environment Variable (QtmhPutEnv) API
• Read from Stdin (QtmhRdStin) API
• Write to Stdout (QtmhWrStout) API
• Convert to DB (QtmhCvtDB) API
• Parse QUERY_STRING Environment Variable or Post stdin data

(QzhbCgiParse) API
• Produce Full HTTP Response (QzhbCgiUtils) API

The old service program QTMHCGI, in library QTCP, contains only the first five
APIs. There is no difference in behavior or parameters between these APIs in
either of the two service programs.

A detailed description of these APIs are available in the IBM manual HTTP
Server for AS/400 Web Programming Guide, GC41-5435.

5.6.2.1 Get environment variable (QtmhGetEnv) API
The QtmhGetEnv API allows you to get the value set by the server for a particular
HTTP environment variable. The required parameters are shown in the Table 59.

Table 59. Parameters for the API QtmhGetEnv

Here are some of the environment variables supported by the system:

CONTENT_LENGTH When the POST method is used to send information, this
variable contains the number of characters. The CGI
program must read CONTENT_LENGTH to determine the
length of the data being read from the standard when
processing the POST request.

QUERY_STRING When information is sent by using a GET method, this
variable contains the information in a query that follows the
"?" (question mark). The string is coded in the standard
URL format of changing spaces to "+" (plus signs) and
encoding special characters with "%xx" hexadecimal
encoding.

Num Description Use Data type

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Integer(10)

3 Length of response Output Integer(10)

4 Request variable Input Char(*)

5 Length of request variable Input Integer(10)

6 Error code I/O Char(*)

Be careful when using the API names because the names of all these APIs are
case sensitive.

APIs names
239

REMOTE_ADDR Contains the requester’s IP address.

REMOTE_HOST Contains the requester’s host name.

REQUEST_METHOD Contains the method (GET or POST) specified with the
METHOD attribute in an HTML form used to send the
request.

5.6.2.2 Put environment variable (QtmhPutEnv) API
The QtmhPutEnv API allows you to set or create a job-level environment variable.
This is useful for communication between programs running in the same job,
such as your program and the Net.Data language environment variable
DTW_SYSTEM. The required parameters are shown in the Table 60.

Table 60. Parameters for the API QtmhPutEnv

5.6.2.3 Read from stdin (QtmhRdStin) API
The QtmhRdStin API allows CGI programs written in languages other than C to
be read from stdin. CGI programs read from stdin when the request from the
browser indicates the method that is POST. This API reads what the server has
generated as input for the CGI program. The required parameters are shown in
Table 61.

Table 61. Parameters for the API QtmhRdStin

5.6.2.4 Write to stdout (QtmhWrStout) API
The QtmhWrStout API provides the ability for CGI programs written in languages
other than C to write to stdout. The required parameters are shown in Table 62.

Table 62. Parameters for the API QtmhWrStout

5.6.2.5 Convert to DB (QtmhCvtDB) API
The QtmhCvtDB API provides an interface for CGI programs to parse CGI input,
defined as a series of keywords and their values, into a buffer that is formatted
according to a DDS file specification. CGI input data, which comes to the CGI
program as character data, is converted by the QtmhCvtDB API to the data type

Num Description Use Data type

1 Environment string Input Char(*)

2 Length of environment string Input Integer(10)

3 Error code I/O Char(*)

Num Description Use Data type

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Integer(10)

3 Length of response available Output Integer(10)

4 Error code I/O Char(*)

Num Description Use Data type

1 Data variable Input Char(*)

2 Length of data variable Input Integer(10)

3 Error code I/O Char(*)
240 Who Knew You Could Do That with RPG IV?

defined for the keyword by the corresponding field name in the input DDS file.
The required parameters are shown in Table 63.

Table 63. Parameters for the API QtmhCvtDB

5.6.2.6 Parse QUERY_STRING environment variable or Post stdin data
(QzhbCgiParse) API
You can use the QzhbCgiParse API to parse the QUERY_STRING environment
variable (for the GET method) or standard input (for the POST method) for CGI
scripts. If the QUERY_STRING environment variable is not set, the
QzhbCgiParse API reads the CONTENT_LENGTH characters from its input. All
return output is written to its standard output.

The required parameters are shown in Table 64.

Table 64. Parameters for the API QzhbCgiParse

5.6.2.7 Produce full HTTP response (QzhbCgiUtils) API
Use the QzhbCgiUtils API to produce a full HTTP 1.0/1.1 response for
non-parsed header CGI programs. This API provides functionality similar to the

Num Description Use Data type

1 Qualified database file name Input Char(20)

2 Input string Input Char(*)

3 Length of input string Input Integer(10)

4 Response variable Output Char(*)

5 Length of response variable Input Integer(10)

6 Length of response available Output Integer(10)

7 Response code Output Integer(10)

8 Error code I/O Char(*)

Num Description Use Data type

1 Command string Input Char(*)

2 Output format Input Char(8)

3 Target buffer Output Char(*)

4 Length of target buffer Input Integer(10)

5 Length of response Output Integer(10)

6 Error code I/O Char(*)

The Command string parameter is used to define a series of flags and
modifiers that control how the input data (found in either QUERY_STRING or
standard input) should be parsed. These options are defined in AS/400e HTTP
Server for AS/400 Web Programming Guide, GC41-5435.

Note
241

cgiutils command used by other IBM HTTP Server platforms. The required
parameters are shown in Table 65.

Table 65. Parameters for the API QzhbCgiUtils

5.6.3 RPG IV CGI programming
Now we can examine how these APIs are used in an RPG IV program. We have
one program, which supports both the GET and POST methods. The only
difference between these two methods is in receiving data. The rest of the
program is the same for both methods.

5.6.3.1 Introduction to the CGIPROG program
The input data sent from the server to the CGI program is prepared in the
name=value format, like this:

NAME=Zdravko+Vincetic&CITY=1000+Ljubljana&STREET=Trg+republike+3&
TYPE=P2&SERV=T

Special characters used in this string have the following meaning:

= Links the name and value of input parameter
& Separates name=value pairs
+ Represents a space (also known as a blank character)

We must use four APIs to perform the following functions:

• QtmhGetEnv to accept input data from the QUERY_STRING variable into the
program variable when the GET method is used.

• QtmhRdStin to read input data from the standard input into the program
variable when the POST method is used.

• QtmhCvtDb to parse data from the program variable into a data structure with
corresponding names and values.

• QtmhWrtStout to write HTML output data to standard output.

Due to the fact that we are using APIs from a service program, the following steps
are required to compile the source code and create a program:

1. Enter the PDM option 15 (Create module), or use the command:

CRTRPGMOD MODULE(CGIPROG)

2. Enter the PDM option 26 (Create program), or use the command:

CRTPGM PGM(CGIPROG) BNDSRVPGM(QHTTPSVR/QZHBCGI)

5.6.3.2 Source code for prototypes CGIPROTO
The source member CGIPROTO contains prototypes for calling CGI APIs
QtmhGetEnv, QtmhRdStin, QtmhCvtDb, and QtmhWrStout as well as wrapper
procedures for these APIs:

* Filename CGIPROTO from CGISRC in RPGISCOOL
* Prototype for API QtmhGetEnv
*
D APIEnVar PR ExtProc('QtmhGetEnv') 1

Num Description Use Data type

1 Command string Input Char(*)

2 Error code I/O Char(*)
242 Who Knew You Could Do That with RPG IV?

D RcvBuffer 2048A
D RcvBufferLen 10I 0
D RspActualLen 10I 0
D EnvVarName 64A
D EnvVarLen 10I 0
D ErrorBuffer 16
* Prototype for API QtmhRdStin
*
D APIStdIn PR ExtProc('QtmhRdStin') 2
D RcvBuffer 2048A
D RcvBufferLen 10I 0
D RspActualLen 10I 0
D ErrorBuffer 16
* Prototype for API QtmhCvtDb
*
D APICvtDb PR ExtProc('QtmhCvtDb') 3
D DBFileName 20A
D DBBuffer 2048A
D DBBufferLen 10I 0
D DBStructure 60
D DBStructLen 10I 0
D DBActualLen 10I 0
D DBRespCode 10I 0
D ErrorBuffer 16
* Prototype for API QtmhWrStout
*
D APIStdOut PR ExtProc('QtmhWrStout') 4
D OutBuffer 2048A
D OutBufferLen 10I 0
D ErrorBuffer 16
* Prototype for API QCMDEXC
*
D ExecCommand PR ExtPgm('QCMDEXC') 5
D CommandTxt 256A
D CommandLen 15P 5
* Prototype for procedure #GetEnv
*
D #GetEnv PR 6
D EnvVarName 64A
D RcvBuffer 2048A
D RspActualLen 10I 0
* Prototype for procedure #RdStin
*
D #RdStin PR 7
D RcvBuffer 2048A
D RspActualLen 10I 0
* Prototype for procedure #WrStout
*
D #WrStout PR 8
D OutBuffer 2048A Value

Prototype CGIPROTO notes
1 Prototype for calling CGI API QtmhGetEnv.

2 Prototype for calling CGI API QtmhRdStin.

3 Prototype for calling CGI API QtmhCvtDb.

4 Prototype for calling CGI API QtmhWrStout.

5 Prototype for calling system API QCMDEXC.

6 Procedure #GetEnv requires three input parameters. The sequence of the
parameters is changed according to the user preference.

7 Procedure #RdStin requires two input parameters.

8 Procedure #WrStout requires only one input parameter.
243

5.6.3.3 Source code for the CGIPROG program
Here is the complete source code:

**
* Filename CGIPROG from CGISRC in RPGISCOOL
* Simple RPG IV program CGIPROG for both methods GET and POST
*
* 1. Compile this source member as module CGIPROG (PDM Option=15)
*
* 2. Create program CGIPROG from module CGIPROG (PDM Option=26)
* with PROMPT(PF4) and BNDSRVPGM(QHTTPSVR/QZHBCGI)
**
* Order Database file
FOrders O A E Disk Prefix(X_)
* HTML Output file (prepared HTML Output in SRC-PF HTMLOUT)
FHTMLOut IF E Disk UsrOpn
**
*
*---
* The information contained in this document has not been submitted
* to any formal IBM test and is distributed AS IS. The use of this
* information or the implementation of any of these techniques is a
* customer responsibility and depends on the customer's ability to
* evaluate and integrate them into the customer's operational
* environment. See Special Notices in redbook SG24-5402 for more.
*---
* Include prototypes
D/Copy RPGISCOOL/CGISRC,CGIPROTO
*
* Variables for the CGI interface API QtmhGetEnv and QtmhRdStin
*
D InBuffer S 2048A
D InBufLen S 10I 0 Inz(%Size(InBuffer))
D InActLen S 10I 0
D EnVarName S 64A
D EnVarLen S 10I 0
* Variables for the CGI interface API QtmhCvtDb
*
D DBBuff S 2048A
D DBBuffLn S 10I 0 Inz(%Size(DBBuff))
D DBDSLn S 10I 0
D DBActLn S 10I 0
D DBRespCd S 10I 0
* Datastructure INPUT fields
D DBFileName S 20A Inz('ORDERS *LIBL ')
* Variables for the CGI interface API QtmhWrStout
*
D OutBuff S 2048A
D OutBuffLn S 10I 0 Inz(%Size(OutBuff))
* Stand Alone Fields used as work fields
*
D Command S 256
D Length S 15P 5
D PostLenCh S 5A
D PostLen S 5S 0
* Define NewLine and Break
*
D NewLine C x'15'
D Break C '
'
* Externally described data structure. Used for Parsing
* Need a different one in each CGI-BIN you write
*
D OrdersDS E DS ExtName(Orders)
* Data structure for error reporting, from QSYSINC/QRPGLESRC(QUSEC)
*
D QUSEC DS
* Qus EC
D QUSBPRV 10I 0 Inz(16)
* Bytes Provided
D QUSBAVL 10I 0
* Bytes Available
D QUSEI 7
* Exception Id
D QUSERVED 1
* Reserved
*QUSED01 17 116
* Varying length
244 Who Knew You Could Do That with RPG IV?

*---
* Get the Environment Variable called REQUEST_METHOD
* Set the EnVarName to REQUEST_METHOD
* Set the EnVarLen to the length of this string
*
C Eval EnVarName = 'REQUEST_METHOD'
C Eval EnVarLen = %Len(%Trim(EnVarName)) 1
C CallP APIEnVar(InBuffer:InBufLen:InActLen:
C EnVarName:EnVarLen:QUSEC)
* If used HTML method is GET
*
C If %Subst(InBuffer:1:3) = 'GET'
*
* Get the Environment Variable called QUERY_STRING
* Set the EnVarName to QUERY_STRING
* Set the EnVarLen to the length of this string
*
C Eval EnVarName = 'QUERY_STRING' 2
C Eval EnVarLen = %Len(%Trim(EnVarName))
C CallP APIEnVar(InBuffer:InBufLen:InActLen:
C EnVarName:EnVarLen:QUSEC)
C Else
*
* If used HTML method is POST
*
* Get the Environment Variable called CONTENT_LENGTH
* Set the EnVarName to CONTENT_LENGTH
* Set the EnVarLen to the length of this string
*
C Eval EnVarName = 'CONTENT_LENGTH' 3
C Eval EnVarLen = %Len(%Trim(EnVarName))
C CallP APIEnVar(InBuffer:InBufLen:InActLen:
C EnVarName:EnVarLen:QUSEC)
* Convert received length from character into number
*
C Eval PostLenCh = *Zeros
C Eval %Subst(PostLenCh:6-InActLen:InActLen) 4
C = %Subst(InBuffer:1:InActLen)
C Move PostLenCh PostLen
* Get the input parameters from STDIN using POST method
*
C Z-Add PostLen InBufLen
C CallP APIStdIn(InBuffer:InBufLen:InActLen 5
C :QUSEC)
C EndIf
*
* The rest of the program is the same for GET and POST
* Input data is in InBuffer with length of returned data in InActLen
* Move this data to the QtmhCvtDb parms for parsing
*
C Eval DBDSLn = %Size(ORDERSDS)
C Eval DBBuff = %Subst(InBuffer:1:InActLen)
C Eval DBBuffLn = InActLen
* Parse using the QtmhCvtDb API
*
C CallP APICvtDB(DBFileName:DBBuff:DBBuffLn:
C ORDERSDS:DBDSLn:DBActLn:DBRespCd:QUSEC) 6
* Field names in external described data structure
* now contain values passed in input data.
* Move HTML Form Input data to Database fields
*
C Eval X_Name = Name 7
C Eval X_City = City
C Eval X_Street = Street
C Eval X_Type = Type
C Eval X_Serv = Serv
* Write Database record file Orders
*
C Write OrderR
*
* If you had multiple values for the same field, you would have lost
* all but the one. Cannot reliably predict which one you will get.
* You need another technique for this situation
*
* Override HTMLOut with member OrderHTML and open file
*
C Eval Command = 'OVRDBF FILE(HTMLOUT) ' + 8
C 'MBR(ORDERHTML) LVLCHK(*NO) ' +
245

C 'OVRSCOPE(*JOB)'
C Eval Length = %Len(%Trim(Command))
C CallP ExecCommand(Command:Length)
C Open HTMLOut
*
* Create the HTML Output in OutBuff field
* Write HTML Required control records
* ADD NewLine append after 80 to 120 characters to OutBuff
*
C Do 9 9
C Read HTMLOut
C Eval OutBuff = %Trimr(OutBuff) + %Trimr(SrcDta)
C + NewLine
C EndDo
C Eval OutBuff = %Trim(OutBuff) + Break + Break
C + %Trimr(Name) + Break
C + %Trimr(City) + Break + %Trimr(Street)
C + Newline + Break + Break
C Select
C When Type = 'P1'
C 10 Chain HTMLOut
C When Type = 'P2'
C 11 Chain HTMLOut
C When Type = 'P3'
C 12 Chain HTMLOut
C EndSl
C Eval OutBuff = %Trimr(OutBuff) + %Trimr(SrcDta)
C + NewLine
C If Serv = 'T'
C 13 Chain HTMLOut
C Else
C 14 Chain HTMLOut
C EndIf
C Eval OutBuff = %Trimr(OutBuff) + %Trimr(SrcDta)
C + NewLine
C 15 Setll HTMLOut
C Read HTMLOut
C Dow Not %Eof(HTMLOut)
C Eval OutBuff = %Trimr(OutBuff) + %Trimr(SrcDta)
C + NewLine
C Read HTMLOut
C EndDo
*
* Send OutBuff to standard output
*
C Eval OutBuffLn = %Len(%Trimr(OutBuff))
C CallP APIStdOut(OutBuff:OutBuffLn:QUSEC) 10
*
* End program
*
C Close HTMLOut 11
C Eval Command = 'DLTOVR FILE(HTMLOUT) LVL(*JOB)'
C Eval Length = %Len(%Trim(Command))
C CallP ExecCommand(Command:Length)
C Eval *InLR = *On

5.6.3.4 Explanation of the CGIPROG program
The program uses two files: the order file ORDERS where accepted orders are
written, and the HTMLOUT file, which contains HTML data used to prepare HTML
output document.

The file ORDERS has the following definition:

A**
A* Physical file ORDERS
A**
A R ORDERR
A NAME 40A COLHDG('Customer Name')
A CITY 40A COLHDG('City')
A STREET 40A COLHDG('Street')
A TYPE 2A COLHDG('Type')
A SERV 1A COLHDG('Service')
246 Who Knew You Could Do That with RPG IV?

In this program, we use the PREFIX keyword with this file to temporarily change
field names by adding the prefix "X_". This is required because the same names
are also used to convert data from the input string received from the Web
browser.

The file HTMLOUT is a source physical file, where the member ORDERHTML
contains data required to create an output HTML document, which is sent to the
Web user as a confirmation for their order. The numeration is not part of the data,
and is added only for easier understanding of the program logic.

01 - content-type: text/html
02 -
03 - <HTML><HEAD>
04 - <TITLE>Ordering an AS/400</TITLE>
05 - </HEAD>
06 - <BODY bgcolor="#F8F8FF">
07 -
08 - <H1>Ordering an IBM System AS/400</H1>
09 - Thanks for ordering an IBM System AS/400 :
10 - Model: Portable

11 - Model: Server 50 S

12 - Model: System

13 - Support Line Service : YES

14 - Support Line Service : NO

15 - <P>
16 - Back Order demo
17 - </BODY></HTML>

To access this member in the source file, we use the Override Database File
(OVRDBF) command, which is executed by calling the system API QCMDEXC. In
the same way, we run the Delete Override (DLTOVR) command at the end of the
program.

On D specifications, we first copy the source member CGIPROTO to include the
prototype definitions for calling CGI APIs and system API QCMDEXC. Then, we
define required data fields used by these APIs.

ORDERSDS is an externally described data structure, which used for parsing
received input data. It has the same record format as the database file ORDERS.
Therefore, we use the keyword EXTNAME. This is also the reason why we need
the PREFIX keyword with the file. It is used by QtmhCvtDb API to parse and
convert data from the name=value format received from QtmhGetEnv or
QtmhRdStin API to separate fields with corresponding names.

The program logic includes the following actions:

1 Using API QtmhGetEnv, we retrieve the environment variable
REQUEST_METHOD, which contains method from the Form document, either
GET or POST.

2 If the requested method is GET, we use again the API QtmhGetEnv to retrieve
the environment variable QUERY_STRING, which contains the input data.

3 If the requested method is POST, we first use the API QtmhGetEnv to
determine the length of the input string by retrieving the environment variable
CONTENT_LENGTH.

4 The content of the environment variable CONTENT_LENGTH is a character
string, which must be extracted and converted to numeric field.

5 Finally, we run the API QtmhRdStin to retrieve input data in the given length
from the standard input.
247

6 The rest of the program is the same for both methods. First, we use the API
QtmhCvtDb to parse the name=value pairs from the input string into the
corresponding data structure, with the same field names as the input string.

7 Now the data can be moved into database fields, and the record is written to
the file ORDERS.

8 To access data from the source file member, we must run the OVRDBF
command using the system API QCMDEXC. Then, we can open the file.

9 The HTML output is prepared. It reads the file HTMLOUT and combs records
from this file with newline and break constants.

10 To send output data to standard output, we use the API QtmhWrStout.

11 At the end of the program, we close the file HTMLOUT and call the system API
QCMDEXC to delete the database override definition.

The HTTP server forwards the prepared HTML document to the browser. The
result of our program is shown in Figure 32.

Figure 32. The HTML output document displayed by the Web browser

You can try this example by compiling the code from this section on your
AS/400 system. Use the following commands to create the program:

ADDLIBLE LIB(RPGISCOOL)
CRTRPGMOD MODULE(RPGISCOOL/CGIPROG) SRCFILE(RPGISCOOL/CGISRC)
CRTPGM PGM(RPGISCOOL/CGIPROG) BNDSRVPGM(QHTTPSVR/QZHBCGI)

With the WRKHTTPCFG command, change the HTTP server configuration,
and add the following directives to enable the CGI program:

Pass /democgi /QSYS.LIB/RPGISCOOL.LIB/CGISRC.FILE/CGIHTML.MBR
Exec /cgibin/* /QSYS.LIB/RPGISCOOL.LIB/*.PGM

To run the program, start the Web browser, and enter the following URL:

http://your-server-name/democgi

Try it yourself
248 Who Knew You Could Do That with RPG IV?

5.6.4 Simplifying CGI programming
API calls from a CGI program can be simplified by creating your own procedures
to reduce the complexity and number of required parameters. These procedures
should be placed in a separate service program, which is then bound to our CGI
program.

We provide you an example of such a service program, which contains the
following procedures:

• #GetEnv to call API QtmhGetEnv
• #RdStin to call API QtmhRdStin
• #WrStout to call API QtmhWrStout

The API QtmhCvtDb requires detailed information about the field names used
within the HTML Form tag. These input field names (as shown in 5.6.1, “HTML
form document” on page 236) are specific for each program and cannot be
included in a general purpose service program.

To compile and create this service program, the following steps are required:

1. Enter the PDM option 15 (Create module), or enter the command:

CRTRPGMOD MODULE(CGISERV)

2. Enter the PDM option 27 (Create service program), or enter the command:

CRTSRVPGM SRVPGM(CGISERV) EXPORT(*ALL) + BNDSRVPGM(QHTTPSVR/QZHBCGI)

5.6.4.1 Source code for the service program CGISERV
Here is the complete source code:

**
* Filename CGISERV from CGISRC in RPGISCOOL
* Service program CGISERV to simplify API calls
*
* 1. Compile this source member as module CGISERV (PDM Option=15)
*
* 2. Create serv. program CGISERV from module CGISERV (PDM Option=27)
* with PROMPT(PF4) and BNDSRVPGM(QHTTPSVR/QZHBCGI)
**
H NoMain 1
**
*
* Include prototypes
D/Copy RPGISCOOL/CGISRC,CGIPROTO 2
*
* Global field definitions
*
D QUSEC DS 3
D QUSBPRV 10I 0 Inz(%size(QUSEC))
D QUSBAVL 10I 0
D QUSEI 7
D QUSERVED 1
*QUSED01 17 116
*---
* Procedure #GetEnv - Get Environment Variable
*
P #GetEnv B Export 4
D #GetEnv PI
D VarName 64A
D InData 2048
D RespLen 10I 0
*
D InDataLen S 10I 0
D VarNameLen S 10I 0
*
C Eval InData = *Blanks
C Eval InDataLen = %Len(InData)
C Eval VarNameLen = %Len(%Trim(VarName))
249

C CallB 'QtmhGetEnv'
C Parm InData
C Parm InDataLen
C Parm RespLen
C Parm VarName
C Parm VarNameLen
C Parm QUSEC
P #GetEnv E
*---
* Procedure #RdStin - Read Standard Input
*
P #RdStin B Export 5
D #RdStin PI
D InData 2048
D RespLen 10I 0
*
D InDataLen S 10I 0
*
C Eval InData = *Blanks
C Eval InDataLen = RespLen
C CallB 'QtmhRdStin'
C Parm InData
C Parm InDataLen
C Parm RespLen
C Parm QUSEC
P #RdStin E
*---
* Procedure #WrStout - Write Standard Output
*
P #WrStout B Export 6
D #WrStout PI
D OutData 2048 Value
*
D OutDataLen S 10I 0
*
C Eval OutDataLen = %Len(%Trim(OutData))
*
C CallB 'QtmhWrStout'
C Parm OutData
C Parm OutDataLen
C Parm QUSEC
P #WrStout E

Program CGISERV notes
1 Keyword NOMAIN at H specifications improves the program performance, and

can be used if the program does not contain the main procedure.

2 Copy prototype definitions from the member CGIPROTO.

3 Error data structure is used in all procedures, and therefore is defined as a
global field definition.

4 Procedure #GetEnv requires three input parameters. The sequence of the
parameters is changed according to user preference.

5 Procedure #RdStin requires two input parameters.

6 Procedure #WrStout requires only one input parameter.

5.6.4.2 Using service program CGISERV
The following code snippet illustrates how to call our subprocedures from a CGI
program to invoke the required API functions. Do not forget that subprocedures
must be prototyped each time you use them. We recommend that you put
prototypes for all these procedures into a separate source member, as we did,
which can be copied into all CGI programs and the service program itself. This
ensures that the same prototypes are always used.

**
* Order Database file
FOrders O A E Disk Prefix(X_)
* HTML Output file (prepared HTML Output in SRC-PF HTMLOUT)
FHTMLOut IF E Disk UsrOpn
250 Who Knew You Could Do That with RPG IV?

**
*
* Include prototypes
D/Copy RPGISCOOL/CGISRC,CGIPROTO
*
*---
* Call API QtmhGetEnv
*
C Eval EnVarName = 'QUERY_STRING'
C CallP #GetEnv(EnVarName : InBuffer : InActLen)
* Call API QtmhRdStin
*
C Z-Add PostLen InActLen
C CallP #RdStin(InBuffer : InActLen)
* Call API QtmhWrStout
*
C CallP #WrStout(OutBuff)

5.6.5 Persistent CGI
A persistent CGI is an extension to the CGI interface that allows a CGI program
to remain active across multiple browser requests and maintain a session with
that browser client. The session is actually disconnected when the response is
sent to the Web client, and then connected again when a new request comes
from the same client. This allows files to be left open, the state to be maintained,
and complex database transactions to be committed or rolled-back based on user
input.

The AS/400 CGI program must be written using named activation groups. This
allows the program to remain active after returning. The CGI program notifies the
server that it wants to remain persistent by using the "Accept-HTSession" CGI
header as the first header it returns. This header defines the session ID
associated with this instance of the CGI program and is not returned to the
browser. Subsequent URL requests to this program must contain the session ID,
which should be written as the first value after the program name. This is called
pathinfo, and this value is presented to the program as an environment variable
PATH_INFO.

The server uses this ID to route the request to that specific instance of the CGI
program. It is possible to reuse an existing session ID, which enables the use of a
back button in the Web browser. The CGI program could, if necessary,
regenerate this session ID for each request. We strongly recommend that you
use Secure Sockets Layer (SSL) for persistent and secure business transaction
processing.

For additional information, see HTTP Server for AS/400 Web Programming
Guide, GC41-5435.

5.6.6 More information on CGI programming in RPG IV
Before you start writing your own CGI programs, we highly recommend that you
look at the AS/400 Internet site, where you can find a library of code examples,
samples, and tools. Go to the following address on the Web:
http://www.as400.ibm.com/snippets

First, select View readme file, followed by View CGIDEVDH. The document
describes the library CGIDEV, which contains a CGI tools service program and a
sample template program, which illustrates how to use the tools. Most of the
high-level language programming in CGI is written in RPG IV. There is little RPG
and CL.
251

This library can be downloaded and installed on your AS/400 system. As a result
of downloading the library, you get a savefile, from which you can restore the
CGIDEV library. You can use this information for writing you CGI applications.

There is an advanced version of all these tools, available for a fee from the IBM
AS/400 Custom Technology Center, which part of the IBM Rochester AS/400
Laboratory. Their experienced AS/400 developers provide software development
services for AS/400 solutions. You can find them on the Internet at:
http://www.as400.ibm.com/service/welcome_3.htm

For more information, refer to the following pages on the Web:

• http://www.as400.ibm.com/snippets

1. Select View Readme files, followed by View CGIDEVDH.
2. Select RPG in the drop-down list.

• http://www.as400.ibm.com/developer/ebiz/cgi/

• http://www.easy400.ibm.it

• http://hoohoo.ncsa.uiuc.edu/cgi/examples.html

Also, refer to the manual AS/400e HTTP Server for AS/400 Web Programming
Guide, GC41-5435.

5.7 Understanding UNIX-POSIX APIs through IFS examples

This section discusses using UNIX or POSIX type APIs by using the Integrated
File System (IFS) application program interfaces (APIs) as an example. If you
tried to use any of the UNIX or POSIX APIs in the past, you may have quickly
noticed that all the examples in the reference manuals use the C language. Since
this is an RPG IV book, we demonstrate that it is far easier for you to use RPG IV.

This section contains RPG IV programming examples using the two generations
of IFS APIs. The distinction between the two generations is the use of a path
name structure, which differentiates the new APIs than the old one, where only
the path name needs to be specified. More details on the path name structure are
also explained, as well as an IFS introduction.

The first generation of IFS APIs shown in this section are the APIs used to
perform basic operations on stream files, such as create, open, read, write, seek,
and close stream files (see 5.7.4, “Introducing basic stream file APIs” on page
256). Through a complete set of examples, we show you how to create a new
stream file, write in it, and read from it, plus use a seek function to change the
cursor location within the file. The RPG IV code required to use them is explained
with the coding examples and a complete sample program, which merges stream
file text with variables values. The complete code for the sample program using
RPGIV subprocedure and pointers programming techniques among others is also
included and explained through an outline summary.

The second generation of the IFS APIs is also explained in this section through a
sample program using the Qp0lProcessSubtree API (see 5.7.5, “Using more
complex IFS APIs: Qp0lProcessSubtree()” on page 280). This API scan any IFS
directories and call a user created exit program for any objects found matching
the selection criteria specified by the RPG IV calling program. This example uses
252 Who Knew You Could Do That with RPG IV?

an external subprocedure as the exit program and shows how to define an array
of pointers in RPG IV, among other programming techniques. The complete
sample code of a scanning directory application is also included and explained
through an outline summary.

The programming examples use the C runtime function to materialize any error
reported by the IFS APIs. This technique is also explained at the end of this
section (see 5.7.6, “IFS APIs error reporting” on page 301). Also, we use a user
created command with list type parameters in these examples to pass the input
parameters to our main procedure. You can also find coding examples retrieving
data out of those more complex parameters.

5.7.1 The Integrated File System (IFS)
The IFS is a part of OS/400 that lets you support stream input/output and storage
management similar to personal computer and UNIX operating systems, while
providing a structure for all information stored in the AS/400 system.

You will find an introduction to the IFS in Appendix B, “An introduction to the
Integrated File System (IFS)” on page 413.

5.7.2 The API manual
The APIs that perform operations on IFS directories and stream files are in the
form of C language functions. With RPG IV, you can use the IFS C APIs that are
included in OS/400 to perform operations on directories, files, and related objects
in the file systems accessed through the IFS interface.

As you may know already, there is no API reference manual entitled "IFS APIs".
The APIs related to the IFS are documented in the System API Reference
OS/400 UNIX-Type APIs, SC41-5875, in the chapter "Integrated File System
APIs". They are described under the UNIX-Type APIs manual as. Being C
functions, they are based on UNIX standards.

As you work through the examples in this section, you may want the ability to
edit and display the stream files located in the IFS. IBM has provided PTFs that
go back to V3R7M0 that contain two new commands: Edit File (EDTF) and
Display Stream File (DSPSTMF). Refer to the following list when ordering the
appropriate PTF for your system:

• SF49052 for V4R3M0
• SF45296 for V4R2M0
• SF41518 for V4R1M0
• SF38832 for V3R7M0

In V4R4M0, the Edit File (EDTF) command made it into OS/400. If you still
need the Display Stream File (DSPSTMF) command, it can be found in
SF55871.

Displaying and editing stream files
253

5.7.3 The path name
The path name format is common across application programming interfaces that
work with objects, which are supported across file systems. These APIs require a
path name to identify the object with which the API will work.

When using an IFS API to operate on an object, you identify the object by
supplying its directory path, following the path name rules specific to the file
system where the IFS object is located. For more information on path name rules
and the IFS, refer to Appendix B, “An introduction to the Integrated File System
(IFS)” on page 413.

As previously noted, the older APIs do not use the path name structure. They
accept the path name as a character string and rely on the information associated
with the job to determine which CCSID, country ID, or language ID to use.

The trend with the newer APIs is to use the path name format or structure, which
contains the CCSID, Country ID and language ID, among others, and expects the
path name to be coded using the value specified in those parameters. For
example, most of the new APIs, but not all of them, pass path names to their exit
programs using the Unicode (UCS-2) CCSID, even if the job uses a different one.
In this case, the CCSID parameter is useful to indicate under which CCSID this
path name has been coded.

The APIs not using the Path name structure usually require the path name string
passed to the API as a parameter to be null terminated (x’00’). This extra step is
required because of the C language origins of these APIs, but can be automated
by using the OPTION(*STRING) keyword on the prototype parameter definition.

5.7.3.1 Path name structure or path name format
This structure defined the path name characteristics, such as:

• Code character set ID (CCSID)
• Country ID
• Language ID
• Path Type Indicator
• Length of path name
• Path name delimiter character

ILE C/400 provides the standard C functions defined by the American National
Standards Institute (ANSI), which also support the IFS stream I/O. These APIs,
such as fopen(), are also available to be used by an RPG IV application to
access DB2/400 files as stream files, but cannot be used to access IFS files
directly. Only the ILE C/400 compile can reroute functions such as fopen() to
the IFS.

If you want to use RPG IV, you can still use these C functions to access IFS
files by manually adding the "_C_IFS_" prefix in front of the function. For
example, "fopen" will become "_C_IFS_fopen". You need to specify the
QC2IFS binding directory when creating your program.

ILE C/400 functions
254 Who Knew You Could Do That with RPG IV?

Plus, it contains the path name itself, as a variable field length or as a pointer, at
the last position in the structure. When the path name is passed as a variable
field length, the path name does not need to be null terminated (x’00’).

The API documentation refers to the Qlg_Path_Name_T format to indicate that
the path name must be passed to (or will be passed by) the API using the path
name structure. The path name structure is provided as a reference in the
QSYSINC library, which is part of the OS/400 - System Openness Includes
(57xxSS1 - option 13) licensed program product. Here is an abstract of the
member QLG, in file QRPGLESRC, which contains the following sample data
structure definition for the path name structure:

D***
D*Structure for NLS enabled path name
D****
D*NOTE: The following type definition only defines the fixed
D* portion of the format. Any varying length field will
D* have to be defined by the user.
D***
DQLGPN DS
D* Qlg Path Name
D QLGCCSID02 1 4B 0
D* CCSID
D QLGCID 5 6
D* Country ID
D QLGLID 7 9
D* Language ID
D QLGERVED07 10 12
D* Reserved
D QLGPT 13 16B 0
D* Path Type
D QLGPL 17 20B 0
D* Path Length
D QLGPND 21 22
D* Path Name Delimiter
D QLGRSV200 23 32
D* Reserved2
D*QLGPN00 33 33
D*
D* Variable length field

This data definition is the result of an automatic conversion from the original C
language include files. Because this member (QSYSINC/QRPGLESRC.QLG)
contains others data definition, we recommend that you do not /COPY the full
contents of it in your programs. As you can see from the above definition, the last
field (QLGPN00) should contain the path name. However, it has been commented
out since it is definition can either be a pointer or a character field using various
lengths.

We recommend that you create your own version of the QLGPN or
Qlg_Path_Name_T format, which would contain only permanent entry of the data
structure. You can use the /COPY member function to include them into your
program, which would declare the Data Structure heading, plus the path name
field definition. As example, the Path name structure definition in your program
would look like this:

* Path name structure definition
DQLGPN DS
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 8000A

The /COPY member PATHNAMEDF would be:

* Path name structure definition based on QSYSINC/QRPGLESRC.QLG
* member name: PATHNAMEDF
D QLGCCSID02 10U 0
* CCSID
255

D QLGCID 2
* Country_ID
D QLGLID 3
* Language_ID
D QLGERVED07 3
* Reserved
D QLGPT 10U 0
* Path_Type
* 0=QLGPN00 is a path name
* 1=QLGPN00 is a pointer
* 2=same as 0 with UNICODE
* 3=same as 1 with UNICODE
D QLGPL 10U 0
* Path_Length
D QLGPND 2
* Path_Name_Delimiter
D QLGRSV200 10
* Reserved2

As you see, we did not include the Data Structure (DS) definition instruction in the
/COPY member. The keyword BASED(pointer) can be used in some
circumstances to map the structure to a specific memory location using a pointer,
for example:

* Path name structure definition
DQLGPN DS Based(PathName@)
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 *

Some of the path name characteristics, such as the path name delimiter,
character set, country ID, or language ID may be constant on your system. You
can also choose to initialize those values in the /COPY member instead of in
every procedure that is using it.

For more information on the path name structure, refer to the AS/400 Information
Center at: http://www.as400.ibm.com/infocenter

Once inside the Information Center site, select Programming, and then OS/400
APIs. You should find Path name structure under Concepts.

5.7.4 Introducing basic stream file APIs
This section demonstrates the usage of some IFS APIs on such stream file basic
operations as stream file creation, open, read, write and close. Using coding
examples, we created a small sample program, which creates a stream file, and a
second one, which writes data into it. The main sample program, MERGESTMF,
merges text with a master file containing variable to produce a new stream file.

The following section contains:

• A sample program, CREATSTMF, creating a stream file, introducing the
open() and close() APIs.

• A second sample program, WRITESTMF, writing to a stream file, using the
write() API along with the two APIs used in the first program.

• Description of the read() and lseek() APIs used to read a stream file content
and change the file offset location.

• An Overall idea of the MERGESTMF main sample program, the anatomy of
the program, including an outline and the complete sample code.
256 Who Knew You Could Do That with RPG IV?

5.7.4.1 Creating, opening, and closing a stream file object
This section explains the usage of the IFS APIs used to open, create, and close a
stream file. As explained later, we are using the open() API to create the stream
file.

The list of IFS APIs used are:

• open() — Open file
• close() — Close file

The sample program CREATSTMF helps you understand the usage of those
APIs to create or clear a stream file, and then close it. All those APIs are
documented in the System API Reference OS/400 UNIX-Type APIs, SC41-5875,
in the chapter "Integrated File System APIs".

Note: None of the following APIs required the use of the path name structure
described earlier.

In the following sections, you can correlate the marker of each API example to
the main source code in 5.7.4.6, “Sample program code” on page 273.

open() — Open file
The open() function opens a file and returns a number called a file descriptor. You
can use this file descriptor to refer to the file in subsequent I/O operations such
as read() or write(). Each file opened by a job gets a new file descriptor.
Optionally, this API can also create a new file if the file specified does not exist
and the proper file status flag has been specified.

The following C syntax can be used as a reference for prototyping parameters
required to call this function:

include <fcntl.h>
int open(const char *path, int oflag, . . .);

Table 66 shows the parameters for this function. These parameters must be
defined in the prototype used to call this API.

Table 66. Parameters for the open() function

Argument Description Use RPG data type C data type

Return value Output Integer(10) int

path Path name Input Pointer char *

oflag file access mode, status
flags and share mode

Input Integer(10) int

mode File mode or file
permission bits

Input
optional

Numeric,
unsigned(10)

mode_t

The creat() function also creates a new file or rewrites an existing file so that it
is truncated to zero length. We recommend that you use the open() function
instead of the creat() function since the open() function allows you to specify a
specific codepage different than the default one. Plus, you need to reuse the
same API anyway to reopen the file for I/O processing.

Using the creat() function
257

Here is the prototype used for the open API in an RPG IV format:

* IFSPROTO from IFSSRC in RPGISCOOL (part 1 of 5)
* open function prototype 2

D open PR 10I 0 ExtProc('open')
D path@ * Value options(*string)
D oflag 10I 0 Value
D mode 10U 0 Value Options(*nopass)
D codepage 10U 0 Value Options(*nopass)

The different parameters are discussed in the following sections. The sample
program CREATSTMF shows where we defined the parameters used by the API,
the return value field, and the call statement (see marker 2, 4, and 7). Please refer
to the following sections for explanations of the other markers.

Open file parameter: Return value
The return value returned is the file descriptor associated with the open file. This
file descriptor is used by the other IFS APIs to refer to this file. In case a problem
occurred during the file opening, the return value will contain "-1", and the errno
global variable is set to indicate the error.

The errno value can be retrieved using various C APIs such as: perror(),
__errno(), and strerror(). These APIs are explained in 5.7.6, “IFS APIs error
reporting” on page 301.

Open file parameter: Path name
The path name field of the file to be opened is passed to the API as an
expression by using the OPTION(*STRING) keyword on the prototype parameter
definition. This path name must refer to a character field name where the
maximum length is within the file system limits. The OPTION(*STRING) keyword
also takes care of having the path name terminated by a null character (x’00’), as
required by the API.

Open file parameter: File access mode, status flag, and share mode
The file access mode, status flags, and share mode descriptions are used to
define how the file will be opened (read, write or read/write), and with which
attributes (append, create, truncate and so on). The C definition of each flag can
be found in the member FCNTL of the source file QSYSINC/H from the system
openness include licensed program product. The following file sample includes
the C definition of the file access mode, status flags, and share mode as
comments with the equivalent definition of those fields in an RPG IV format on
the next line. We also converted the value from the Octal notation to
hexadecimal:

* OPENDFN from IFSSRC in RPGISCOOL (part 1 of 2)
* structure definition for open() function 4
* from QSYSINC/H.FCNTL member
*/***/
/ File Access Modes */
*/***/
#define O_RDONLY 00001 / Open for reading only */
D O_RDONLY S 10I 0 INZ(x'01')
#define O_WRONLY 00002 / Open for writing only */
D O_WRONLY S 10I 0 INZ(x'02')

codepage Codepage Input
optional

Numeric,
unsigned(10)

unsigned

Argument Description Use RPG data type C data type
258 Who Knew You Could Do That with RPG IV?

#define O_RDWR 00004 / Open for reading and writing */
D O_RDWR S 10I 0 INZ(x'04')
#define O_CREAT 00010 / Create file if it doesn't exist */
D O_CREATE S 10I 0 INZ(x'08')
#define O_EXCL 00020 / Exclusive use flag */
D O_EXCL S 10I 0 INZ(x'10')
/ 00040 reserved */
#define O_TRUNC 00100 / Truncate flag */
D O_TRUNC S 10I 0 INZ(x'40')
*/***/
/ File Status Flags values */
*/***/
#define O_CODEPAGE 040000000 / code page flag */
D O_CODEPAGE S 10I 0 INZ(x'800000')
#define O_TEXTDATA 0100000000 / text data flag */
D O_TEXTDATA S 10I 0 INZ(x'01000000')
#define O_APPEND 00400 / Set append mode */
D O_APPEND S 10I 0 INZ(x'0100')
#define O_LARGEFILE 004000000000 / Large file access */
D O_LARGEFILE S 10I 0 INZ(x'20000000')
#define O_INHERITMODE 001000000000 / inherit mode flag */
D O_INHERITMODE S 10I 0 INZ(x'08000000')
*/***/
/ File Share Mode Values */
*/***/
#define O_SHARE_RDONLY 000000200000 / Share with readers only */
D O_SHARE_RDONLY S 10I 0 INZ(x'010000')
#define O_SHARE_WRONLY 000000400000 / Share with writers only */
D O_SHARE_WRONLY S 10I 0 INZ(x'020000')
#define O_SHARE_RDWR 000001000000 / Share with readers and
* writers */
D O_SHARE_RDWR S 10I 0 INZ(x'040000')
#define O_SHARE_NONE 000002000000 / Share with neither readers
* nor writers */
D O_SHARE_NONE S 10I 0 INZ(x'080000')

Even if those fields are used as a constant within the program referring to them,
we had to declare them as a standalone field (S) because a hexadecimal
expression initializes a constant field as a character field instead of a numeric
field. The flag description can be found in the documentation of the open() API in
the manual System API Reference OS/400 UNIX-Type APIs, SC41-5875.

Though possibly additional static storage is created, we recommend that you
/COPY this member file into your RPG program for ease of use and
comprehension of those flags. Flags can be added to each other when multiple
flags are required such as on the same open instructions (see marker 6 and 7).

Open file parameter: Security attributes or permission bits (optional)
The security attributes or permission bits are used to specify the security
attributes of the stream file (authorities). This optional parameter must only be
used when the file status flag contains the O_CREAT or O_CODEPAG values.
When O_CREAT hasn’t been specified on the file status flag (for example where
only O_CODEPAG was specified), this keyword has no effect. However,
something needs to be specified so the Codepage parameters can be read
(prototype *NOPASS restriction).

The C definition of each modes can be found in the member STAT of source file
QSYSINC/SYS from the System Openness includes licensed program. The
following file sample includes the C definition of the security attributes as
comments with the equivalent definition of those in an RPG IV format, converted
from the octal notation to hexadecimal:

* OPENDFN from IFSSRC in RPGISCOOL (part 2 of 2)
* from QSYSINC/SYS.STAT member 4
*/***/
/ Definitions of Security Attributes and File Types */
*/***/
259

* Owner attributes
* #define S_IRUSR 0000400 /* Read for owner */
D S_IRUSR S 10I 0 INZ(x'0100')
* #define S_IWUSR 0000200 /* Write for owner */
D S_IWUSR S 10I 0 INZ(x'80')
* #define S_IXUSR 0000100 /* Execute and Search for owner */
D S_IXUSR S 10I 0 INZ(x'40')
* #define S_IRWXU (S_IRUSR|S_IWUSR|S_IXUSR) /* Read, Write,
* Execute for owner */

* Primary group attributes
D S_IRWXU S 10I 0 INZ(x'01C0')
* #define S_IRGRP 0000040 /* Read for group */
D S_IRGRP S 10I 0 INZ(x'20')
* #define S_IWGRP 0000020 /* Write for group */
D S_IWGRP S 10I 0 INZ(x'10')
* #define S_IXGRP 0000010 /* Execute and Search for group */
D S_IXGRP S 10I 0 INZ(x'08')
* #define S_IRWXG (S_IRGRP|S_IWGRP|S_IXGRP) /* Read, Write,
* Execute for group */
D S_IRWXG S 10I 0 INZ(x'38')

* *PUBLIC attributes
* #define S_IROTH 0000004 /* Read for other */
D S_IROTH S 10I 0 INZ(x'04')
* #define S_IWOTH 0000002 /* Write for other */
D S_IWOTH S 10I 0 INZ(x'02')
* #define S_IXOTH 0000001 /* Execute and Search for other */
D S_IXOTH S 10I 0 INZ(x'01')
* #define S_IRWXO (S_IROTH|S_IWOTH|S_IXOTH) /* Read, Write,
* Execute for other */
D S_IRWXO S 10I 0 INZ(x'07')

Even if those fields are used as a constant within the program referring to them,
we had to declare them as a standalone field (S) because a hexadecimal
expression initializes a constant field as a character field instead of a numeric
field. The flag description can be found in the documentation of the chmod(),
Change File authorizations API, in the manual System API Reference OS/400
UNIX-Type APIs, SC41-5875.

Although additional static storage may be created, we recommend that you
/COPY this member file into your RPG program for ease of use and
comprehension of those flags.

The following tables can be use to compare the security attribute flag and their
equivalence with the OS/400 stream file data authorities.

The different permission bits for the file owner are shown in Table 67.

Table 67. Data authority for the file owner

Argument Description Decimal
Value

Data
authority

S_IRUSR Read permission for the file owner 256 *R

S_IWUSR Write permission for the file owner 128 *W

The usage note section in the open() API documentation contains important
information on each file system specifications and their own ways of handling
authorities. More information on OS/400 security can be found in Security -
Reference, SC41-5302.

Stream file authorities
260 Who Knew You Could Do That with RPG IV?

Table 68 lists the different authorities available for the primary group of the
stream file.

Table 68. Data authority for the primary group

Table 69 shows the different permissions available for the *public authority
keyword.

Table 69. Data authority for *public

Flags from the same or different elements (owner, group or *public) can be added
to each other when multiple flags are required on the same open instruction, as
described in the sample code (see marker 7).

In the previous sample program, a file created using these mode parameters has
the following authorities:

Owner Read, write, and execute authorities on the object (*RWX).
Group Read, write, and execute authorities on the object (*RWX).
*PUBLIC Read and execute authority (*RX)

Codepage (optional)
This optional parameter indicates under which codepage the date in the stream
file will be kept if used during the file creation. Or, it may indicate that the

S_IXUSR Search permission (for a directory) or execute
permission (for a file) for the file owner

64 *X

S_IRWXU Read, write, and search or execute for the file
owner; bitwise inclusive OR of S_IRUSR,
S_IWUSR, and S_IXUSR

448 *RWX

Argument Description Decimal
value

Data
authority

S_IRGRP Read permission for the file's group 32 *R

S_IWGRP Write permission for the file's group 16 *W

S_IXGRP Search permission (for a directory) or execute
permission (for a file) for the file's group

8 *X

S_IRWXG Read, write, and search or execute permission for
the file's group; bitwise inclusive OR of S_IRGRP,
S_IWGRP, and S_IXGRP

56 *RWX

Argument Description Decimal
Value

Data
authority

S_IROTH General read permission 4 *R

S_IWOTH General write permission 2 *W

S_IXOTH General search permission (for a directory) or
general execute permission (for a file)

1 *X

S_IRWXO General read, write, and search or execute
permission; bitwise inclusive OR of S_IROTH,
S_IWOTH, and S_IXOTH

7 *RWX

Argument Description Decimal
Value

Data
authority
261

codepage of the data read or write to the file, on a regular file open on an already
existing file.

The flag O_CODEPAGE must have been specified on the file status flag
parameter for this parameter to be used by the API. Also a value must have been
specified on the Security attribute parameter so this keyword can be read by the
API. This is a prototype *NOPASS parameter restriction.

The codepage must be indicated as a numeric decimal value as shown in this
sample program.

close() — Close file
The close() function closes a file by using the file descriptor initialized by the
open() function. This function also frees the descriptor field that can be reused by
any future open() operations.

The following C syntax can be used as a reference to prototype the parameters
required to call this function:

#include <unistd.h>
int close(int fildes);

Table 70 shows the parameters for this function. These parameters must be
defined in the prototype used to call this API.

Table 70. Parameters for the close() function

Here is the prototype used for the read API in an RPG IV format:

* IFSPROTO from IFSSRC in RPGISCOOL (part 2 of 5)
* close function prototype 2

Dclose PR 10I 0 Extproc('close')
D FileDesc 10I 0 Value

The sample program CREATSTMF shows where we defined the variable used by
the API, the return value field, and the call statement for closing the stream file
(see marker 2, 3, and 18).

The return value returned by the API indicates if the operation was successful (0)
or not (-1). In case of problems, the errno global variable is set to indicate the
error. The errno value can be retrieve using various C APIs such as: perror(),
__errno(), and strerror(). These APIs are explained later in this chapter.

CREATSTMF: A small sample program creating a stream file object
This sample program creates a stream file named "master" in a directory called
"/rpgiscool" or clears the content of an already exiting one. The stream file
created by this program is used as the master file in our later examples.

* CREATSTMF from IFSSRC in RPGISCOOL

* Program: CREATSTMF
*
* This program demonstrate the usage of the open() IFS APIs
* (UNIX-type) to create a stream file.
* If the stream file already exist, its content will be cleared.
* The program also close the file.

Argument Description Use RPG data type C data type

Return value Output Integer(10) int

fildes File descriptor Input Integer(10) int
262 Who Knew You Could Do That with RPG IV?

*
* **** Module needs to be bind with module DSPERROR
* during pgm creation ***

H option(*srcstmt) bnddir('QC2LE')

* Prototypes required for the IFS APIs 2
/COPY RPGISCOOL/IFSSRC,IFSPROTO

* Prototypes requires for DspError subprocedure
/COPY RPGISCOOL/IFSSRC,ERRPROTO

* open function return value definition 4
D FileDesc S 10I 0 Inz

* Path name variables 5
D Path S 100A Inz('/rpgiscool/master')

* Other variables for the IFS APIs used 7
D Oflag S 10I 0 Inz
D Mode S 10I 0 Inz
D CodePage C 437

* API return value fields 3
D RC S 10I 0

* Constants used by the program.
D Null C X'00'

* read API() definitions for oflag and mode parameters 4
/COPY RPGISCOOL/IFSSRC,OPENDFN

* Set file status flag for stream file creation where the file is
* open for both reading and writing, a codepage will be specified
* in the codepage parameter and if the file exist, its size will
* be truncated to zero (cleared) 7
C Eval oflag = O_CREATE + O_RDWR + O_CODEPAGE
C + O_TRUNC
* Set security attribute parameter 7
C Eval mode = S_IRWXU + S_IRWXG +
C S_IROTH + S_IXOTH

* Create stream file 7
C Eval FileDesc = open(%trimr(path) : oflag :
C mode : codepage)
C If FileDesc = -1
C CallP DspError('IFS open')
C Else

* Close the file 18
C Eval RC = close(Filedesc)
C If RC = -1
C CallP DspError('IFS close')
C EndIf
C EndIf

C Eval *inLR = *on
263

5.7.4.2 Writing data to a stream file object
This section explains the usage of the IFS API used to write data to a stream file
object. The write() -- Write to Descriptor IFS API is used. The two APIs described
in the previous section are also used in this example.

The sample program WRITESTMF will help you understand the usage of those
APIs to open a stream file, write text data into it, and then close the stream file.
All those APIs are documented in System API Reference OS/400 UNIX-Type
APIs, SC41-5875, in the chapter "Integrated File System APIs".

Note: None of the following APIs required the use of the path name structure
described earlier.

In the following sections, you can correlate the marker of each API example to
the main source code in 5.7.4.6, “Sample program code” on page 273.

write() — Write to Descriptor
The write() function writes a certain number of bytes from a memory area
indicated by a buffer pointer to a file identified by its file descriptor. The data
conversion from the stream file CCSID to the job or program run-time CCSID is
handled by the API(), if the O_TEXTDATA status flag is specified on the open()
instruction.

If the O_APPEND status flag was set on the file opening, the file offset is
positioned at the end of the file, so the data can be appended after the existing
data. Otherwise, the write function starts writing data at the beginning of the file.
The file offset changes by the number of bytes written to the file.

The API returns to the number of bytes written in the return value parameter.

To recreate the previous program sample on your system, you can use the
following commands:

CRTRPGMOD MODULE(rpgiscool/creatstmf) SRCFILE(rpgiscool/ifssrc)
CRTPGM PGM(rpgiscool/creatstmf) MODULE(rpgiscool/creatstmf
rpgisccol/dsperror)

The program creates a stream file master in the directory /rpgiscool. The
directory must exit prior to calling the program. To create the directory in the
IFS, you can use the command:

MD DIR(’/rpgiscool’)

Do not forget to create the DSPERROR module before, with the instructions
provided in “The DspError subprocedure” on page 302. The three /COPY
members used in this program must also exist where they are referenced.
These members are defined in the following section.

Also, the IFS APIs and the C runtime functions are included in a binding
directory named QC2LE. We chose to specify the binding directory (BDNDIR)
on the H-Spec of our modules. Instead, the binding directory can be explicitly
specified on the CRTPGM command.

Try it yourself
264 Who Knew You Could Do That with RPG IV?

A value of -1 in the number of byte read indicates that the read was not
successful. The errno value can be retrieved by using various C APIs such as:
perror(), __errno(), and strerror(). These APIs are explained later in this chapter.

The following C syntax can be used as a reference to prototype the parameters
required to call this function:

#include <unistd.h>
ssize_t write
(int file_descriptor, const void *buf, size_t nbyte);

Table 71 shows the parameters for this function. These parameters must be
defined in the prototype used to call this API.

Table 71. Parameters for the write() function

Here is the prototype used for the write API in an RPG IV format:

* IFSPROTO from IFSSRC in RPGISCOOL (part 4 of 5)
* write function prototype 2

D write PR 10I 0 Extproc('write')
D FileDescO 10I 0 Value
D bufferO@ * Value
D nbyte 10U 0 Value

The sample program WRITESTMF shows where we defined the parameters used
by the API, the return value field, and the call statement (see marker 2, 3, and 16).

WRITESTMF: A small program to write data to a stream file
Here is an example of a simple program, which writes data to an already existing
stream file. The stream file updated by this program will be used as the master
file in our later examples.

Argument Description Use RPG data type C data type

Return value Output Integer(10) ssize_t

file_descriptor File descriptor Input Integer(10) int

buf Buffer pointer Input Pointer void *

nbyte number of bytes to write Input Numeric
Unsigned(10)

size_t

Notice that this program uses the commercial at (@) to indicate that the
variable is a pointer. This breaks the style guide rule found in 2.1.3.3, “Avoid
using special characters (for example, @, #, $) when naming items” on page
22.

Avoid the "@" symbol to indicate that the variable is a pointer. A good method
to use is the "Hungarian Notation", where the first character of the variable
name indicates the data type of the variable, for example, pCustNbr or
cActStsCde.

An exercise for you
265

* WRITESTMF from IFSSRC in RPGISCOOL

* Program: WRITESTMF
*
* This program demonstrate the usage of some IFS APIs (UNIX-type)
* to handle stream file. The program open an existing stream
* file which should be empty and writes 10 records in the stream
* file, then close the file
*
* **** Module needs to be bind with module DSPERROR during pgm creation ***

H option(*srcstmt) bnddir('QC2LE')

* Prototypes required for the IFS APIs 2
/COPY RPGISCOOL/IFSSRC,IFSPROTO
* Prototypes requires for DspError subprocedure
/COPY RPGISCOOL/IFSSRC,ERRPROTO

* Variables for the IFS APIs used 3
D Path S 100A Inz('/rpgiscool/master')
D FileDesc S 10I 0 Inz
D Oflag S 10I 0 Inz
D CodePage C 437
D buffer S 200A Inz(*blank)
D buffer@ S * Inz(%addr(buffer))

* API return value fields 3
D RC S 10I 0

* read API() definitions for oflag and mode parameters 4
/COPY RPGISCOOL/IFSSRC,OPENDFN

* The data in the following DS will be written as a series of records
* to the IFS file that we open
D MyData DS
D 198A Inz('Hello &name&,')
D 198A Inz(*blanks)
D 198A Inz(' Here is an email -
D sent by &lng& program.')
D 198A Inz(*blanks)
D 198A Inz(' Please accept -
D my best wishes for your -
D futur success using')
D 198A Inz(' this cool language')
D 198A Inz(*blanks)
D 198A Inz(*blanks)
D 198A Inz('Regards,')
D 198A Inz('The RPGisCool team.')
D RecordData 198A Dim(10) Overlay(MyData)

* Stand-alone variables
D Count S 5P 0 Inz
* Constants used by the program.
D CRLF C X'0D25'
D Null C X'00'

* Set file status flag for stream file open where the file is open
* for write only and data conversion will occurs (ASCII to EBCDIC)
* autmatically when the file data will be written 6

C Eval oflag = O_WRONLY + O_TEXTDATA

* Openning the file, receiving a file descriptor 6
C Eval FileDesc = open(%trimr(path) : oflag)
C If FileDesc = -1
C CallP DspError('IFS open')
C Else

* For every record in the array
C For Count = 1 to %Elem(RecordData)
C Eval buffer = %trimr(RecordData(Count))
C + CRLF
* Write records to the file 16
C Eval rc = write(FileDesc : buffer@ :
C %len(%trimr(buffer)))
C If RC = -1
C CallP DspError('IFS write')
C EndIf
266 Who Knew You Could Do That with RPG IV?

C EndFor

* Close the file 18
C Eval RC = close(FileDesc)
C If RC = -1
C CallP DspError('IFS close')
C EndIf
C EndIf

C Eval *inLR = *on

5.7.4.3 Reading stream file content and changing the file
offset position
This section explains the usage of the last two IFS API used in the main sample
application MERGESTMF. Using these two APIs, you can read the content of a
stream file and change the file offset (cursor) position.

The list of IFS APIs used are:

• read() — Read from Descriptor
• lseek() — Set File Read/Write Offset

To recreate the previous program sample on your system, you can use the
following commands:

CRTRPGMOD MODULE(rpgiscool/writestmf) SRCFILE(rpgiscool/ifssrc)
CRTPGM PGM(rpgiscool/writestmf) MODULE(rpgiscool/writestmf
rpgisccol/dsperror)

The program writes to a stream file named master in the directory /rpgiscool,
which you can create using the CREATSTMF sample program described
previously. Since the directory and the stream file must exits prior to calling the
program, you can use the following command to create the directory and the
stream file in the IFS, if you prefer not to use the CREATSTMF program:

MD DIR(’/rpgiscool’)
EDTF STMF(/’rpgiscool/master’)
(and exit the EDTF editor by pressing F3 twice to save the file.)

Note: The EDTF utility is only available at V4R4 and beyond. If you are running
at V4R3 or prior, you can create an empty stream file by using the following
commands:

CRTPF PF(rpgiscool/master) RCDLEN(1)
CPYTOSTMF FROMMBR('/qsys.lib/rpgiscool.lib/master.file/master.mbr')
TOSTMF('/rpgiscool/master')
DLTF FILE(rpgiscool/master)

Do not forget to create the DSPERROR module before, with the instructions
provided in “The DspError subprocedure” on page 302. The three /COPY
members used in this program must also exist where they are referenced.
These members are defined in the following section.

Also, the IFS APIs and the C runtime functions are included in a binding
directory named QC2LE. We chose to specify the binding directory (BDNDIR)
on the H-Spec of our modules. Instead, the binding directory can be explicitly
specified on the CRTPGM command.

Try it yourself
267

We provide a sample coding abstract to use each of them. The main sample
program MERGESTMF will guide you to a more practical example.

All of these APIs are documented in System API Reference OS/400 UNIX-Type
APIs, SC41-5875, in the chapter "Integrated File System APIs".

Note: None of the following APIs require the use of the path name structure
described earlier.

In the following sections, you can correlate the marker of each API example to
the main source code in 5.7.4.6, “Sample program code” on page 273.

read() — Read from descriptor
The read() function reads a certain number of bytes of a file referred by a file
descriptor into a memory area indicated by a buffer pointer. The data conversion
from the stream file CCSID to the job or program run-time CCSID is handled by
the API() if the O_TEXTDATA status flag has been specified on the open()
instruction.

The following C syntax can be used as reference to prototype the parameters
required to call this function:

#include <unistd.h>
ssize_t read(int file_descriptor,

void *buf, size_t nbyte);

Table 72 shows the parameters for this function. These parameters must be
defined in the prototype used to call this API.

Table 72. Parameters for the read() function

Here is the prototype used for the read API in an RPG IV format:

* IFSPROTO from IFSSRC in RPGISCOOL (part 3 of 5)
* read function prototype 2

D read PR 10I 0 Extproc('read')
D FileDescI 10I 0 Value
D bufferI@ * Value
D nbyte 10U 0 Value

Here is an abstract of our sample program where we defined the variable used by
the API, the return value field and the call statement:

* Prototypes required for the IFS APIs 2
/COPY RPGISCOOL/IFSSRC,IFSPROTO
...
* Variables for read() APIs 3
D bufferI S 200A Inz(*blank)
D bufferI@ S * Inz(%addr(bufferI))
D nbyteread S 10I 0 Inz(0)
D nbyteset S 10U 0 Inz(200)

Argument Description Use RPG data type C data type

Return value Output Integer(10) ssize_t

file_descrip
tor

File descriptor Input Integer(10) int

buf Buffer pointer Output Pointer void *

nbyte number of bytes to be
read

Input Numeric
Unsigned(10)

size_t
268 Who Knew You Could Do That with RPG IV?

...
* Read() structure definition 4
/COPY RPGISCOOL/IFSSRC,OPENDFN
...
* read stream file (filedescI) for 200 bytes and place results in
* bufferI 11
C Eval nbyteread = read(filedescI : bufferI@ :
C nbyteset)

The number of bytes to be read (nbyteset) indicates how many bytes to read into
the stream file identified by its file descriptor. The bytes read are placed in a
memory location represented by the buffer pointer passed to the API. The API
initializes this location with the data read from the file and returns to number of
bytes read in the return value.

A value of -1 in the number of byte read indicates that the read was not
successful. The errno value can be retrieved by using various C APIs such as:
perror(), __errno(), and strerror(). These are explained later in this chapter.

The read() operation begins reading the file at the file offset associated with the
file descriptor. On a successful read, the file offset is changed by the number of
bytes read. This file offset can be manually changed by using the lseek() API,
which is described in the following section.

lseek() — Set file read/write offset
The lseek() function changes the current file offset to a new position in a file
referred by its file descriptor. The new position is the given byte offset from the
starting position specified by the whence parameter. After using lseek() to
position the cursor offset to a new location, the next I/O operation on the file, like
read() or write(), begins at that new location.

The following C syntax can be used as reference to prototype the parameters
required to call this function:

#include <unistd.h>
off_t lseek(int file_descriptor, off_t offset, int whence)

Table 73 shows the parameters for this function. These parameters must be
defined in the prototype used to call this API.

Table 73. Parameters for the write() function

Here is the prototype used for the lseek API in an RPG IV format:

* IFSPROTO from IFSSRC in RPGISCOOL (part 5 of 5)
* lseek function prototype 2
D lseek PR 10I 0 Extproc('lseek')
D FileDesc 10I 0 Value
D offset 10I 0 Value
D whence 10I 0 Value

Here is an abstract of our sample program where we defined the variable used by
the API, the return value field, and the call statement:

Argument Description Use RPG data type C data type

Return value Output Integer(10) off_t

file_descrip
tor

File descriptor Input Integer(10) int

offset offset Input Integer(10) int

whence the starting position Input Integer(10) int
269

* Prototypes required for the IFS APIs 2
/COPY RPGISCOOL/IFSSRC,IFSPROTO
...
* variables for lseek API 3
D nbyteread S 10I 0 Inz(0)
D whence S 10I 0 Inz(SEEK_CUR)
...
* Lseek() structure definition 4
/COPY RPGISCOOL/IFSSRC.LSEEKDFN
...
* reposition to file offset before the previous read 15
C Eval rc = lseek(FileDescI :
C nbyteread:
C whence)

In this example, the nbyteread value was initialized by the previous read()
instruction. The lseek function positions the offset to its original position before
the read occurs. Perhaps the file can be read again with a larger buffer for
example. The offset is moved from the current file offset (whence) minus the
number of bytes read previously.

The whence parameter represents the starting position of the offset movement.
The API documentation describes the value of this parameter as:

SEEK_SET The start of the file
SEEK_CUR The current file offset in the file
SEEL_END The end of the file

The C definition of each value available for this parameter can be found in the
member UNISTD of the source file QSYSINC/H from the system openness
include licensed program. The following file sample includes the C definition of
the whence values as comments with the equivalent definition of those in an RPG
IV format:

filename: RPGISCOOL/IFSSRC(LSEEKDFN)
* structure definition for lseek() function 4
* from QSYSINC/H.UNISTD member

*/***/
/ Constants for lseek() */
*/***/
* #define SEEK_SET 0 /* Seek to given position */
D SEEK_SET C 0
* #define SEEK_CUR 1 /* Seek relative to current
* position */
D SEEK_CUR C 1
* #define SEEK_END 2 /* Seek relative to end of file */
D SEEK_END C 2

We recommend that you /COPY this member file into your RPG program for ease
of use and comprehension, as shown in the previous example.

5.7.4.4 Overall concept of the sample application
The sample application used in this section merges text passed as a parameter
to a master file, where the variable text location is defined. The result of the
merging produces an output stream file. As example of using this master file is
shown here:

stream file name: /rpgiscool/master:
************Beginning of data**************
Hello &name&,

Here is an email sent by &lng& program.

Please accept my best wishes for your future success using
this cool language.

Regards,
270 Who Knew You Could Do That with RPG IV?

The RPGisCool team.
************End of Data********************

Note: A carriage return and line feed character (x’0d25’) end each line.

You can use the following command to pass the required parameters to the RPG
IV program. Using the master file above, this example creates a stream file
named /rpgiscool/out, where the two variables used, &var1& and &lng&, are
replaced by the corresponding values passed on the Merge Stream File
(MERGESTMF) command:

MERGESTMF MASTER('/rpgiscool/master') OUTPUTFILE('/rpgiscool/out')
ELEMENTS(('&name&' 'World') ('&lng&' 'an RPG IV'))

In this example, we decided to use a command object because the OS/400
command processing has technical difficulties handling character strings longer
than 32 bytes as parameters. For more information, see the chapter "Passing
Parameters between Programs and Procedures" in CL Programming,
SC41-5721.

Here is the content of the result file:

stream file name: /rpgiscool/out:
************Beginning of data**************
Hello World,

Here is an email sent by an RPG IV program.

Please accept my best wishes for your future success using
this cool language.

Regards,
The RPGisCool team.
************End of Data********************

Go directly to 5.7.4.5, “Anatomy of the MERGESTMF sample program” on page
271, for a detailed explanation of the sample program.

5.7.4.5 Anatomy of the MERGESTMF sample program
As described in 5.7.4.4, “Overall concept of the sample application” on page 270,
this sample program merges data passed as a parameter with data already
specified in a master stream file to produce a new stream file.

For the benefits of providing a simple example, this program can replace
variables by their associated value only if the variable identifier is fully contained
within a 200 byte or less record length. We know there is better way to do this,
but we intended to keep this IFS API sample program as simple as possible.

Program MERGESTMF outline
Here is the outline of the Merge Stream file (MERGESTMF) program:

• Field definitions

1 Declare the prototype and the procedure interface for the program input
parameters.

The Edit File (EDTF) and Display Stream File (DSPSTMF) commands are
available through a PTF. See the label box “Displaying and editing stream files”
on page 253.

Stream file display and edit
271

2 Declare the prototype used to call the IFS APIs and the DSPerror external
subprocedure.

3 Define the variables used to pass or receive data from the IFS APIs.

4 Define the structure definition used by the IFS APIs.

5 This section also defines various standalone global variables used by this
program.

• File opening

6 Open the master file in read only mode and enable text data conversion. In
case of an error, call the DspError external subprocedure to display the
error, and skip the rest of the process.

7 Open the output file for creation, in read/write mode with codepage
specified and data truncation if the file already exists. The owner and the
primary group member have *RWX authorities and *PUBLIC has *RX
authority. In case of an error, call the DspError external subprocedure to
display the error, and skip the rest of the process.

8 Close the output file. In case of an error, call the DspError external
subprocedure to display the error, and skip the rest of the process.

9 Reopen the output file, this time, specify the write only mode and the text
data conversion function. In case of an error, call the DspError external
subprocedure to display the error, and skip the rest of the process.

• Main process

10 The Main process is executed if no errors are encountered during the file
opening section. The program loops until there are no more bytes to read
in the master file or an error occurred with any of the IFS APIs.

11 The read instruction reads 200 bytes of the master file to the input buffer
string. In case of an error, call the DspError external subprocedure to
display the error, and skip the rest of the process (see marker 17).

12 If no errors occur during the read operation and the number of bytes
returned is greater than zero, the input buffer string is scanned to look for
the carriage return/Line feed characters (CRLF) represented by the
characters x’0d25’. If found, the output buffer string is initialized with the
data from the beginning of the input buffer string until (and including) the
CRLF character.

13 For every merge variable specified as an input parameter, the variable
identifier and the replacement value are extracted from their input
parameter. The output buffer string is scanned with the variable identifier
and replaced by the replacement value if found in the record. See
“MERGESTMF program notes” on page 277 for more information.

14 The output buffer string is written to the output file, using the number of
bytes of the output buffer string from the beginning until the CRLF is
encountered for the length of the string to be written to the stream file. In
case of an error, call the DspError external subprocedure to display the
error, and skip the rest of the process. See “MERGESTMF program notes”
on page 277 for more information.

15 The file offset is changed back to the byte after the CRLF character has
been encountered in the input buffer string, so the next read can start from
this offset. In case of an error, call the DspError external subprocedure to
272 Who Knew You Could Do That with RPG IV?

display the error, and skip the rest of the process. See “MERGESTMF
program notes” on page 277 for more information.

16 If no CRLF characters were found in step 12, the input buffer string is
written to the output file using the number of bytes read as the length of
the data being written to the stream file. In case of an error, call the
DspError external subprocedure to display the error, and skip the rest of
the process.

• File closing

18 Both stream files are closed. In case of an error, call the DspError external
subprocedure to display the error, and skip the rest of the process.

5.7.4.6 Sample program code
In this section, you find the complete sample code used in the MERGESTMF
sample program. This sample program is made of two modules, a user created
command and multiple /COPY members, which are described as follows:

There is an important consideration that you need to take care of when you are
creating and then reading or writing to a stream file in the same program. For
the EBCDIC to ASCII (or the opposite) translation to occur between your
application and the ASCII stream file, you must open the file twice, in this
sequence:

1. Open the file for creation with the file status flag set to O_CREAT, the
proper mode, and the codepage.

2. Close the file.

3. Re-open the file with the proper file status flag, so the EBCDIC to ASCII
translation can be handled.

When the open function is used to create a new file, the codepage parameter
indicates under which codepage this file is created. It is usually an ASCII
codepage, such as 437, since stream files are mainly ASCII files. On file
creation, the codepage also indicates the character set of the data expected to
be passed to the write() API. The codepage specified was an ASCII one, and
as your RPG IV program is working under your job CCSID, which is an
EBCDIC one (unless specify otherwise). Because of this, the data would needs
to be converted manually before it is passed to IFS APIs using this file. No
automatic conversion occurs even if the O_TEXTDATA status flag is specified.

This is the reason why a second open is needed. When the open function is
performed on an already existing file, and the O_TEXTDATA status flag is
specified, the data read or write is converted automatically between this code
page and the file codepage. The recommended way is to leave the default one
(job CCSID) and to specify the O_TEXTDATA status flag.

This logic may appear confusing, but it works. You can find more information
on this subject in the open() API documentation, in Using the codepage
parameter section of the System API Reference OS/400 UNIX-Type APIs,
SC41-5875.

Why use two opens when creating a new file?
273

• The main module (MERGESTMF)
• The User created command object
• The Main module prototype for input parameter (/COPY member)
• The IFS APIs prototypes (/COPY member)
• The structure definitions used by the open() API (/COPY member)
• The structure definition used by the lseek() API (/COPY member)
• The DspError module (DSPERROR)
• The DspError subprocedure prototype (/COPY member)

This program can use the master file created with the small sample programs
found in “CREATSTMF: A small sample program creating a stream file object” on
page 262 and “WRITESTMF: A small program to write data to a stream file” on
page 265.

The main module MERGESTMF
Here is the code of the main module. It includes markers that relate the RPG IV
code to the explanations in “MERGESTMF program notes” on page 277.

* MERGESTMF from IFSSRC in RPGISCOOL
**
*MERGESTMF
*
* This program demonstrate the usage of some IFS APIs (UNIX-type)
* to handle stream file. The program reads a master stream file, converts
* a user variable coded in the text to a value pass in parameters, and
* write the new string to another stream file.
*
* The following Unix type API's are used in this example:
* Open(), read(), write(), close(), lseek(),
* Also, this program use 2 C-runtime functions to display the any errors
* encounters while using the UNIX APIs: __errno(), strerror()
*
* This program receives an 3 input parameters: pathname for the master file,
* string to replace the variable "&var1&" and the output file path name.
*
* **** Module needs to be bind with module DSPERROR during pgm creation ***
**

H option(*srcstmt) bnddir('QC2LE')

* Program prototypes
/COPY RPGISCOOL/IFSSRC,MERGEPROT

* Input parameters 1
D Mergestmf PI
D inputpath 100A
D outputpath 100A
D elemstr 1142A

* Prototypes required for the IFS APIs 2
/COPY RPGISCOOL/IFSSRC,IFSPROTO
* Prototypes requires for DspError subprocedure

Notice that this program uses the commercial at (@) to indicate that the
variable is a pointer. This breaks the style guide rule found in 2.1.3.3, “Avoid
using special characters (for example, @, #, $) when naming items” on page
22.

Avoid the "@" symbol to indicate the variable is a pointer. A good method is to
use the "Hungarian Notation", where the first character of the variable name
indicates the data type of the variable, for example, pCustNbr or cActStsCde.

An exercise for you
274 Who Knew You Could Do That with RPG IV?

/COPY RPGISCOOL/IFSSRC,ERRPROTO

* Variables for Open() API 3
D oflag S 10I 0 Inz(0)
D mode S 10U 0 Inz(0)
D codepage S 10U 0 Inz(437)
D Rc S 10I 0 Inz(0)
* Variables for Read(), Write() and Close() APIs
D FileDescI S 10I 0 Inz(0)
D FileDescO S 10I 0 Inz(0)
D bufferI S 200A Inz(*blank)
D bufferI@ S * Inz(%addr(bufferI))
D bufferO S 300A Inz(*blank)
D bufferO@ S * Inz(%addr(bufferO))
D nbyteset S 10U 0 Inz(200)
D nbyteread S 10I 0 Inz(0)
* Variables for lseek() API
D whence S 10I 0 Inz(SEEK_CUR)

* read API() definitions for oflag and mode parameters 4
/COPY RPGISCOOL/IFSSRC,OPENDFN
* lseek API() definitions for whence parameter
/COPY RPGISCOOL/IFSSRC,LSEEKDFN

* stand-alone variables 5
D Null S 1A Inz(x'00')
D Pos S 5U 0 Inz(0)

D CRLFPos S 10I 0 Inz(0)
D CRLF S 2A Inz(x'0d25')

* Variables required for the list within list parameter (elemstr) 5
D pElemstruct S *
D pElems S *

D elemstruct DS based(pElemstruct)
D numelems 5I 0
D displacements 5I 0 dim(10)

D elems DS based(pElems)
D num 5I 0
D var 10A
D txt 100A

D elemidx S 10I 0 Inz(0)
D elemvar S 10A varying dim(10)
D elemtxt S 100A varying dim(10)

* Set file status flag for stream file read
C Eval oflag = O_RDONLY + O_TEXTDATA
* Open stream file for read 6
C Eval FileDescI = open(%trimr(inputpath) :
C oflag)
C If FileDescI = -1
C CallP DspError('OpenIn')
C Else

* Set file status flag for stream file creation
C Eval oflag = O_CREATE + O_RDWR + O_CODEPAGE
C + O_TRUNC
C Eval mode = S_IRWXU + S_IRWXG +
C S_IROTH + S_IXOTH
* Create stream file 7
C Eval FileDescO = open(%trimr(outputpath) :
C oflag : mode : codepage)
C If FileDescO = -1
C CallP DspError('OpenOut1')
C Else
* If created, Close the file 8
C Eval rc = close(FileDescO)
C If rc = -1
C CallP DspError('CloseOut1')
C Else

* If created and close, Open stream file for write 9
C Eval oflag = O_WRONLY + O_TEXTDATA
C Eval FileDescO = open(%trimr(outputpath) :
275

C oflag)
C If FileDescO = -1
C CallP DspError('OpenOut2')
C Endif
C Endif
C Endif
C Endif

* Do Main process until no more data or error 10
C If FileDescI <> -1 and FileDescO <> -1

* Do Read the file until no more data or error
C DoU nbyteread <= 0 or
C FileDescI = -1 or rc = -1

* Read the Input File 11
C Eval nbyteread = read(FileDescI : bufferI@ :
C nbyteset)

C If nbyteread > 0 and FileDescI >= 0

* Scan buffer for the first "carriage return" and "line feed"
* character 12
C Eval CRLFpos = %scan(CRLF : bufferI)

* If CRLF found, Set Output buffer with data including first CRLF
C If CRLFpos > 0
C Eval bufferO = %subst(bufferI :
C 1 : CRLFpos + 1)

* pre-process the list within list parameter (elemstr) using basing pointer 13
C Eval pElemstruct = %addr(elemstr)
C For elemidx = 1 to numelems
C Eval pElems = %addr(elemstr) +
C displacements(elemidx)
C Eval elemvar(elemidx) = %trim(var)
C Eval elemtxt(elemidx) = %trim(txt)
C Endfor

* For every elements specified as parameters, scan for the variable, if
* found, replace the variable by it's associated text.
C For elemidx = numelems downto 1

C Eval pos = %scan(elemvar(elemidx) : bufferO)
C If pos > 0
C Eval bufferO = %replace(elemtxt(elemidx) :
C bufferO : pos :
C %len(elemvar(elemidx)))
C Endif
C Endfor

* Write Output buffer to Output file 14
C Eval rc = write(FileDescO : bufferO@ :

%scan(CRLF : bufferO) + 1)
* If error occured during write
C If rc = -1
C CallP DspError('Write1')
C Endif

* Move back file offset to character after the first CRLF in the file
* and use lseek to position cursor so read() can read at the beginning
* of the next line 15
C Eval rc = lseek(FileDescI :
C - ((nbyteread - CRLFpos) - 1) :
C whence)
C If rc = -1
C CallP DspError('lseekIn')
C Endif

* String with no CRLF found, write complete string 16
* to output file
C Else
C Eval rc = write(FileDescO : bufferI@ :
C nbyteread)

* If error occured during write
C If rc = -1
C CallP DspError('Write2')
276 Who Knew You Could Do That with RPG IV?

C Endif
* Endif CRLF found
C Endif

* If error occured during read 17
C Else
C If FileDescI = -1
C CallP DspError('ReadIn')
C Endif
C Endif

C Enddo

* Close the files 18
C Eval rc = close(FileDescI)
C If rc = -1
C CallP DspError('CloseIn')
C Endif

C Eval rc = close(FileDescO)
C If rc = -1
C CallP DspError('CloseOut2')
C Endif

* Endif both opens successfull
C Endif

* End of program
C Eval *inLR = *on

MERGESTMF program notes
1 To add more flexibility to this sample program, we allowed 10 different

variable names and values to be passed to the program as input parameters.
The maximum length of a variable name is 10 character. Its replacing value
can be up to 100 characters. We defined them in the command object as a
list within a list parameter type. You can find more information on this
definition in CL Programming, SC41-5721, in Section 9.4.3 "Defining Lists
within Lists."

In the Calculation Specification, the markers 5 and 13 indicate where
information is retrieved out of this list parameter.

13 Please refer to section 1 and Section 9.4.3 "Defining Lists within Lists", in the
manual CL Programming, SC41-5721, for more information on the values
passed in this list parameter. In this program example, we use based data
structures and address concatenation (with the displacement) to find the
correct value in the list parameter.

The %replace function, new at V4R4, replaces the variable name by its
associated value and removes the leading and trailing blanks in the
replacement value. With the %replace function, the %scan function is used to
find the starting position of where the insertion in the existing text needs to be
done. The %len function is used to determine the length of the text to be
inserted.

14 The length of the data written to the file is determined by the &SCAN function
on the CRLF character. Since this is a two-byte character and the %SCAN
reports the location of the first byte, one is added to the location to indicate
the length of the string.

15 Because the last successful read() operation set the cursor location (offset)
of the Input File after the last byte read, we use the number of bytes read
277

minus the position of the CRLF, minus 1, since it is a two-byte indicator (as
described above), to subtract the offset from its current location.

The user created command object MERGESTMFC
The filename used for the user created command object is MERGESTMFC. Here
is the sample code:

/* filename: RPGISCOOL/IFSSRC(MERGESTMFC)
/* Command definition for MERGESTMF program */

CMD PROMPT('Merge Stream File')
PARM KWD(MASTER) TYPE(*PNAME) LEN(100) +

PROMPT('Master file name' 1)
PARM KWD(OUTPUTFILE) TYPE(*PNAME) LEN(100) +

PROMPT('Output file name' 2)
PARM KWD(ELEMENTS) TYPE(ELEM) MAX(10) PGM(*YES) +

PROMPT('Merge Elements definition' 3)
ELEM: ELEM TYPE(*CHAR) LEN(10) EXPR(*YES) CASE(*MIXED) +

PROMPT('Variable name')
ELEM TYPE(*CHAR) LEN(100) MIN(1) CASE(*MIXED) +

EXPR(*YES) PROMPT('Replacing value')

The main module prototype MERGEPROT for input parameter
The filename for the main module prototype is MERGEPROT. Here is the
program prototype defining the input parameters interface, which is included in
the main source with the /COPY instruction:

* filename: RPGISCOOL/IFSSRC(MERGEPROT)
* MergeStmf prototypes 1
D MergeStmf PR Extpgm('MERGESTMF')
D Inputpath 100A
D Outputpath 100A
D mergestr 1142A

The IFS APIs prototype IFSPROTO
Here are the definitions of the prototypes required to call the IFS APIs used in this
program. The member name is IFSPROTO. Refer to the definition of each of
them in 5.7.4.3, “Reading stream file content and changing the file offset position”
on page 267.

* IFSPROTO from IFSSRC in RPGISCOOL
* Prototypes for IFS APIs 2
* Open() - Open File API
D open PR 10I 0 ExtProc('open')
D path@ * Value Options(*string)
D oflag 10I 0 Value
D mode 10U 0 Value Options(*nopass)
D codepage 10U 0 Value Options(*nopass)

* read() -- Read from Descriptor
D read PR 10I 0 Extproc('read')
D FileDescI 10I 0 Value
D bufferI@ * Value
D nbyte 10U 0 Value

* write() -- Write to Descriptor
D write PR 10I 0 Extproc('write')
D FileDescO 10I 0 Value
D bufferO@ * Value

You can create the command object named MERGESTMF with the following
command:

CRTCMD CMD(RPGISCOOL/MERGESTMF) PGM(MERGESTMF) SRCFILE(RPGISCOOL/IFSSRC)
SRCMBR(MERGESTMFC)

This command implies that the program created will be named MERGESTMF.

Creating the command
278 Who Knew You Could Do That with RPG IV?

D nbyte 10U 0 Value

* close() -- Close File or Socket Descriptor
D close PR 10I 0 Extproc('close')
D FileDesc 10I 0 Value

* lseek()--Set File Read/Write Offset
D lseek PR 10I 0 Extproc('lseek')
D FileDesc 10I 0 Value
D offset 10I 0 Value
D whence 10I 0 Value

The structure definitions used by the open() API
The member name used for the structure definition of the open API is OPENDFN.
It should contain the definitions of the file access mode, status flags, and share
mode, described in “Open file parameter: File access mode, status flag, and
share mode” on page 258, with the security attributes described in “Open file
parameter: Security attributes or permission bits (optional)” on page 259.

The structure definition used by the lseek() API
The member name used for the structure definition of the lseek API is
LSEEKDFN. The contents of this member are described in “lseek() — Set file
read/write offset” on page 269.

The DspError subprocedure prototype
The member name for the DspError subprocedure prototype is ERRPROTO. The
content of this member is described in “Prototype for the DspError subprocedure”
on page 301.

The DspError module (DSPERROR)
The DSPError module is used to display error messages that occur during the
API processing. The subprocedure retrieves the content of the errno variable and
retrieves the associated text. Both information, plus a text location input
parameter is displayed on the screen. This external module needs to be bound at
program creation time with the main module. There is more information on the
DspError subprocedure in 5.7.6.2, “The DspError subprocedure” on page 301.
279

5.7.5 Using more complex IFS APIs: Qp0lProcessSubtree()
This section demonstrates the usage of another IFS API named
Qp0lProcessSubtree(). The primary function of this API is to search the directory
under a specific path name. It selects and passes objects, one at a time, to an
exit program that is identified on its call. The exit program can be either a
procedure or a program.

5.7.5.1 Overall concept of the sample program SWEEP
This RPG IV program is based on the C sample program provided in Section
2.57.1, "Qp0lProcessSubtree()--Process a Path Name - Scenario 4," of System
API Reference OS/400 UNIX-Type APIs, SC41-5875. This program processes a
directory and all files and subdirectory within this directory, starting at a specific
path name specified as one of the input parameters.

A user created command object is used to passed the parameters to the APIs.
Since the parameters of the command are the same as the ones required by the
API, with exception of the exit program pointer, they are explained along with the
API parameters explanations. For the example, we are using the directory
structure defined in Figure 33 on page 281, where a, b, c, d, e, and f are
directories under the root file system, and t, u, v, w, x, y, z are stream files.

To re-create the previous program sample on your system, you can use the
following commands:

CRTRPGMOD MODULE(MERGESTMF) SRCFILE(IFSSRC)
CRTPGM PGM(MERGESTMF) MODULE(MERGESTMF DSPERROR)

Do not forget to create the DSPERROR module before. The instructions are
provided in “The DspError subprocedure” on page 302.

Also, the IFS APIs and the C runtime functions are included in a binding
directory named QC2LE. We chose to specify the binding directory (BDNDIR)
on the H-Spec of our modules. Instead, the binding directory can be explicitly
specified on the CRTPGM command.

For your information, the two programs “CREATSTMF: A small sample
program creating a stream file object” on page 262 and “WRITESTMF: A small
program to write data to a stream file” on page 265 are used to create and
update the master stream file used by the MERGESTMF program in this
section.

You can use the user created command, as described in 5.7.4.4, “Overall
concept of the sample application” on page 270, to call the program.

Try it yourself
280 Who Knew You Could Do That with RPG IV?

Figure 33. IFS structure sample with directories and stream files

This command can be used to call the sample program:

SWEEP PATHNAME('/a') OBJTYPES(*STMF) INEXCLUTY(*EXCL)
USERTEXT('The stream file found by Sweep is:')
INEXCLUPN('/a/b/c/d' '/a/b/c/e')

The following results can be obtain from the spooled file printed by the sample
program.

The stream file found by Sweep is:
/a/b/c/f/z
The stream file found by Sweep is:
/a/b/c/x
The stream file found by Sweep is:
/a/b/c/y
The stream file found by Sweep is:
/a/b/t
Qp0lProcessSubtree() Successful

For each object or directory encountered during the process, the API calls an exit
program, which prints the first 132 bytes of the path name (sample program
limitation), along with User Text specified on the command. The API also provides
the functionality of including or excluding the directories from the search or to
search only specific object types. In this case, we excluded two directories and
their associated stream files (/a/b/c/d and /a/b/c/e), and we only asked for the
stream file (*STMF) object type. The exit program used by the API is a

/

a

b

t c

d e x y f

u v w z
281

subprocedure defined in a different module as the main procedure calling the
API. The exit program handles a path name in Unicode (UCS-2) format.

For this sample program to stay as simple as possible, the input parameters path
name must not be greater than 100 bytes. We also assumed none of the path
name process by the exit program would be larger than 8000 bytes. The
command object is not necessary to use this API in an RPG program, but it
provides a much simpler interface when passing the parameters from the
command line.

5.7.5.2 The Qp0lProcessSubtree() API
The Qp0lProcessSubtree() API is a new IFS system function. The integrated file
system is a part of OS/400 that supports stream input/output and storage
management similar to a personal computer and UNIX operating systems, while
providing an integrated structure over all objects stored in the AS/400. One of
several features that allows this support to be accomplished is a hierarchical
directory structure that allows objects to be organized like fruit on different
branches of a tree. The Qp0lProcessSubtree() API is the first AS/400 system
function to allow these directories or the objects within these directories to be
selectively identified, collected, deleted, or otherwise processed, within or across
physical file systems. It is a C integrated language environment (ILE) function
that can be used in ILE C, ILE RPG, or ILE COBOL C/400 programs.

The Qp0lProcessSubtree() API starts at a caller-specified directory or path name
and sweeps through all objects in the tree under that directory. The API invokes a
caller-specified exit program for each object encountered that meets the input
specifications from the caller. This exit program is either a procedure or a
program and is designed by the API caller to complete the necessary processing
of a selected object.

The Qp0lProcessSubtree() API is documented in the System API Reference
OS/400 UNIX-Type APIs, SC41-5875, in the chapter "Integrated File System
APIs".

The following C syntax can be used as a reference to prototype parameters
required to call this function:

#include <Qp0lstdi.h>
int Qp0lProcessSubtree (
Qlg_Path_Name_T *Path_Name,
uint Subtree_level,
Qp0l_Objtypes_List_t *Objtypes_array_ptr,
uint Local_remote_obj,
Qp0l_IN_EXclusion_List_t *IN_EXclusion_ptr,
uint Err_recovery_action,
Qp0l_User_Function_t *UserFunction_ptr,
void *Function_CtlBlk_ptr, ...);

Table 74 on page 283 shows the parameters for this function. These parameters
must be defined in the prototype used to call this API.
282 Who Knew You Could Do That with RPG IV?

Table 74. Parameters for the Qp0lProcessSubtree() API

Here is the API prototype in an RPG IV format:

* PRCSUBTRPR from SWEEPSRC in RPGISCOOL (part 1 of 2)
* Prototype for Qp0lProcessSubtree() API 2
* From the System API Reference OS/400 UNIX-Type APIs
D ProcessSubtree PR 10I 0 Extproc('Qp0lProcessSubtree')
D PathName@ * Value options(*string)
* Path_Name, see DS QLGPN
D SubtreeLevel 10U 0 Value
* Subtreee_level, 0=Yes, 1=No
D ObjtypeArray@ * Value
* Objtypes_array_ptr
D LocalRemote 10U 0 Value
* Local_remote_obj, 0=Local+Remote,
* 1=Local , 2=Remote
D InExclusion@ * Value
* In_Exclustion_ptr, see DS QP0INEXL
D ErrRecovery 10U 0 Value
* Err_recovery_action
* 0 = Pass name to Exit Pgm with ErrID
* 1 = Bypass the object
* 2 = Send CPDA1C0 to Joblog
* 3 = Pass NULL to Exit Pgm with ErrID
* 4 = End Process
D UserFunction@ * Value
* UserFunction_ptr, see DS QP0LUF
D FuncCtrlBlk@ * Value
* Function_ctlBlk_ptr, see FuncCtrlBlk

Here is an abstract from our sample program where we define the variables used
by the API, the return value field, and the call statement:

* Qp0lProcessSubtree prototypes 2
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRPR
...
* Path name structure based from QSYSINC/QRPGLESRC,QLG 3
D QLGPN DS
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 8000A

* Array size constants for structure definitions 4
D QP0TYPES_C C 66
D Qlg_Path_NameC C 10
* Qp0lProcessSubtree Type Definitions
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRDF

Argument Description Use RPG data type C data type

Return value Output Integer(10) int

Path_Name Path Name Input * Qlg_Path_Name_T

Subtree_level Subtree_level Input Unsigned
Numeric(10)

uint

Objtypes_array_ptr Array of Object types structure Input * Qp0l_Objtypes_List_t

Local_remote_obj Local or Remote objects Input Unsigned
numeric (10)

uint

In_Exclusion_ptr Array of Includes or Excludes
directories

Input * Qp0l_IN_EXclusion_List_t

Err_recovery_action Handle action for error recovery Input Unsigned
numeric (10)

unint

UserFunction_ptr Pointer to the process a path
name exit program (subprocedure
or program)

Input * Qp0l_User_Function_t

Function_CtlBlk_ptr Pointer to the function control block Input * void *
283

* For Array of pointers initialization
D InExclusionPN S Like(QLGPN) DIM(Qlg_Path_NameC)

* Field definition for parameters of Qp0lProcessSubtree 5
D PathName@ S * Inz(%addr(PathName))
D PathName S LIKE(QLGPN)
D SubtreeLevel S 10U 0 INZ(0)
D ObjtypeArray@ S * Inz(%addr(QP0LOL))
D LocalRemote S 10U 0 INZ(0)
D InExclusion@ S * Inz(%addr(QP0INEXL))
D ErrRecovery S 10U 0 INZ(0)
D UserFunction@ S * Inz(%addr(QP0LUF))
D FuncCtrlBlk@ S * Inz(%addr(FuncCtrlBlk))
...
* Stand-Alone variables 6
D Rc S 10I 0 INZ(0)
...
* Calling the Qp0lProcessSubtree API, receiving return code in RC 16
C Eval Rc = ProcessSubtree(PathName@ :
C SubtreeLevel : ObjtypeArray@ :
C LocalRemote : InExclusion@ :
C ErrRecovery : UserFunction@ :
C FuncCtrlBlk@)

We initialized the non-pointer type field to their default on the field declaration, so
we do not have to refer to them in the C-specs. The object types array, the
In_exclusion list, and the function control block parameters can be initialized to
*NULL if they do not specify any values.

The usage of the different parameters involving pointers are discussed in the
following sections.

Path name
The API uses the path name structure to pass the path name as a parameter to
the API. Only a pointer to the path name structure defined in your program is
passed to the API.

Refer to 5.7.3.1, “Path name structure or path name format” on page 254, for a
description of the path name structure.

The path name is formatted and passed as a pointer to the API in the sample
program using these instructions:

* Input parameters for program 1
D Sweep PI
D InputPath 100A
...
* Path name structure based from QSYSINC/QRPGLESRC,QLG 3
D QLGPN DS
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 100A
...
* Field definition for parameters of Qp0lProcessSubtree 5
D PathName@ S * Inz(%addr(PathName))
D PathName S LIKE(QLGPN)
..
* Initialize the Path Name constants 7
C Eval QLGCCSID02 = 37
C Eval QLGCID = 'US'
C Eval QLGLID = 'ENU'
C Eval QLGERVED07 = *ALLx'00'
C Eval QLGPT = 0
C Eval QLGPND = x'6100'
C Eval QLGRSV200 = *ALLx'00'
* Initialize the Input Path Name variable 8
C If InputPath <> *blank
C Eval QLGPL = %len(%trim(InputPath))
C Eval QLGPN00 = %subst(InputPath : 1 : QLGPL)
C Eval PathName = QLGPN
* No path name specified
284 Who Knew You Could Do That with RPG IV?

C Else
C Eval PathName@ = *NULL
C Endif

In this example, we used the default country, language, and code character set
IDs of US, ENU and 00037. Of course, this can be modified to reflect your job
attributes or retrieved dynamically by the program. We kept the initialization of
these constants in the C-specs so the /COPY member can be used for a different
environment. We also chose to limit the path name size to 100 bytes as the input
parameter definition.

The InputPath field contains the starting path name, which must be a directory.
This parameter is mandatory unless an Inclusion list is passed (see
“IN_Exclusion list” on page 286 for more information). The path name is copied
into the QLGPN00 path name variable of the path name structure, and the length
of the path name is placed into QLGPL. Then, the complete structure definition
(QLGPN) is copied into the Path Name variable so the memory location of this
variable can be passed to the API as a pointer. The parameter is initialized to
*NULL if no path name is passed to the program.

Array of object types
This parameters identifies a list of object types that will make the API invoke the
process for a path name exit program if they are encountered during the process.
The default, a NULL pointer, as used in our sample program, indicates that *ALL
object types will be processed.

The following structure is provided to pass the object types list to the API. A
pointer to the structure definition (DS) is passed to the API. This structure
definition is based on the one found in the member QP0LSTDI of the source file
QSYSINC/QRPGLESRC from the System openness include licensed program:

* PRCSUBTRDF from SWEEPSRC in RPGISCOOL (part 1 of 3)
* Qp0lProcessSubtree() API Object types list structure def. 4
DQP0LOL DS
D QP0NBROO00 10I 0 INZ(0)
* Number of object
* types in the list
D QP0TYPES 11 DIM(QP0TYPES_C)
* Variable length entry

As you can see, the dimension or number of elements of the table are defined
using a constant. This design allows the structure definition to be fixed and
placed in an external member and set into the main source by using the /COPY
method when needed. The size constant is defined and initialized in the main
source depending on the intended utilization of this array.

The object type array is formatted and passed as a pointer to the API in the
sample program using these instructions:

* Input parameters for program 1
D Sweep PI
...
D ObjTypes 662A
...
* Array size constants for structure definitions 4
D QP0TYPES_C C 66
* Qp0lProcessSubtree Type Definitions
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRDF
...
* Field definition for parameters of Qp0lProcessSubtree 5
D ObjtypeArray@ S * Inz(%addr(QP0LOL))
...
*Stand-Alone fields 7
D DS
285

D ObjTypes2 1 2A
D ObjTypesN 5I 0 Overlay(ObjTypes2)
D Idx S 5P 0
...
* Initialize Object Type Array to *NULL if no ObjType 10
C Eval ObjTypes2 = %subst(ObjTypes : 1 : 2)
C Eval QP0NBROO00 = ObjTypesN

C For Idx = 1 to QP0NBROO00
C Eval QP0TYPES(Idx) = %subst(ObjTypes :
C (10 * idx) -7 : 10)
* Add Null character if no special values used
C If QP0TYPES(Idx) <> '*ALLSTMF' and
C QP0TYPES(Idx) <> '*ALLDIR' and
C QP0TYPES(Idx) <> '*MBR'
C Eval QP0TYPES(Idx) = QP0TYPES(Idx) + x'00'
C EndIf
C EndFor
* Map pointer to *NULL for default
C If QP0NBROO00 = 0 or QP0TYPES(1) = '*ALL'
C Eval ObjtypeArray@ = *NULL
C End

The ObjTypes input parameters are defined as a list of 66 elements of 10 bytes
each. There 66 possible object type choices at V4R4 on the AS/400 system. This
list of parameters also include two bytes (at the beginning) to indicate the number
of elements passed to the program. This number is extracted in ObjTypesN and
then placed in QP0NBROO00, as defined in the QP0LOL structure definition.

The Object type array in the structure definition, QP0TYPES, is defined using the
constant QP0TYPES_C for the size of the array of 11 bytes for each element.
This last arrays contains one more byte per elements since the null termination
string is required except when using the three special values (*ALLDIR,
*ALLSTMF, and *MBR). This array is filled by extracting the value from the
ObjTypes input parameter.

Because the API only requires a pointer to the structure definition, the field
ObjtypeArray@ is used to pass the memory location as a pointer. If no object
types have been passed to the program or *ALL object types was specified, the
API requires a *NULL value for the pointer parameter.

IN_Exclusion list
This parameters represents a list of the only directories (path name) that need to
be included in the API sweep, or a list of directories that needs to be excluded
from the sweep when starting at the input path name. If an Inclusion list is
specified, the input path name must be blank. This parameter implies that the
usage of an array of pointer techniques as the path name specified are passed as
pointer referring to a path name structure definition. Multiple directories can be
passed to the API as an Inclusion or an Exclusion list.

The following structure definition is provided to pass the Inclusion or Exclusion
list to the API. A pointer to this structure definition is passed to the API. This
structure definition is based on the one found in the member QP0LSTDI of the
source file QSYSINC/QRPGLESRC from the System openness include licensed
program:

* PRCSUBTRDF from SWEEPSRC in RPGISCOOL (part 2 of 3)
* Qp0lProcessSubtree() API IN_EXclusion list structure def. 4
DQP0INEXL DS
D QP0INEX 10I 0 INZ(0)
* Inclusion list or
* exclusion list
* type identifier
D QP0NBROP 10I 0 INZ(0)
286 Who Knew You Could Do That with RPG IV?

* Number of path name
* pointers in the
* inclusion or
* exclusion list
D QP0ERVED18 8 INZ(*ALLx'00')
* Must be zero
*
D Qlg_Path_Name * DIM(Qlg_path_NameC)
* Variable length entry
* Array of pointers

The dimension or size of the Qlg_Path_Name array is defined using a constant,
which should be specified in the main source, where the /COPY member
instruction using this structure definition is specified. Same as the Object Types
array, this design allows flexibility as the /COPY member can stay constant even
if the number of elements of the array can be flexible in different programs.

The In_exclusion list parameter is formatted and passed to the API in the sample
program using those instructions:

* Input parameters for program 1
D Sweep PI
...
D In_ExclusionT 1A
D In_ExclusionP 1002A
...
* Path name structure based from QSYSINC/QRPGLESRC,QLG 3
D QLGPN DS
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 100A

* Array size constants for structure definitions 4
D Qlg_Path_NameC C 10
* Qp0lProcessSubtree Type Definitions
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRDF
* For Array of pointers initialization
D InExclusionPN S Like(QLGPN) DIM(Qlg_Path_NameC)
...
* Field definition for parameters of Qp0lProcessSubtree 5
D InExclusion@ S * Inz(%addr(QP0INEXL))
...
* Stand-Alone fields 7
D DS
D InExcl2 1 2A
D InExclN 5I 0 Overlay(InExcl2)
D Idx S 5P 0
...
* Initialize the Path Name constants 7
C Eval QLGCCSID02 = 37
C Eval QLGCID = 'US'
C Eval QLGLID = 'ENU'
C Eval QLGERVED07 = *ALLx'00'
C Eval QLGPT = 0
C Eval QLGPND = x'6100'
C Eval QLGRSV200 = *ALLx'00'
...
* Initialize In_Exclusion parameter 12
C If In_ExclusionT <> *blank
C Move In_ExclusionT QP0INEX
C Eval InExcl2 = %subst(In_ExclusionP : 1 : 2)
C Eval QP0NBROP = InExclN

C For Idx = 1 to QP0NBROP
C Eval QLGPN00 = %subst(In_ExclusionP :
C (100 * idx) - 97 : 100)
C Eval QLGPL = %len(%trim(QLGPN00))
C Eval InExclusionPN(Idx) = QLGPN
C Eval Qlg_Path_Name(Idx) =
C %addr(InExclusionPN(Idx))
C EndFor
C EndIf
C If QP0NBROP = 0
C Eval InExclusion@ = *NULL
C Endif
287

Since the API receives two types of lists (Inclusion or Exclusion) and they are
mutually exclusive, two input parameters are defined to be passed to the
program: the list type and the path names list. The list type parameter
In_ExclusionT is passed to QP0INEX unless it contains a blank meaning that no
lists have been passed to the program. Same as for the object type arrays, the
path names list is passed as a maximum of 10 values, each having a length of
100 bytes (the number of values and the length are limitations of this sample
program only). This list is passed in the parameter In_ExclusionP, with a length of
1002 bytes since the first two bytes indicate the number of values passed, which
is extracted to QP0NBROP using InExclN and InExcl2 as intermediate.

Using the same techniques as for the Input Path Name parameter, the path
names are extracted from In_ExclusionP and then incorporated in the path name
structure with the proper length and other constants initialized. As an array of
pointers is used to pass the path names to the API, each path name encountered
is copied into a path name array, InExclusionPN, using the path name structure
as a definition. The memory location of each filled index in the path name array is
passed as a pointer to the array of pointers Qlg_Path_Name within the
In_Exclusion list structure definition (QP0INEXL).

Since the API requires a pointer to the structure definition, the field InExclusion@
is used to pass the memory location of the In_Exclusion list structure definition as
a pointer. If the number of elements of the path names list is zero, the pointer is
initialized to a *NULL value as required by the API.

User function pointer
The user function pointer represents a pointer to a structure definition where a
program name and library or a procedure pointer are specified. This program or
procedure is referred as the process a path name exit program, which is called by
the API every time an object meeting the selection criteria is encountered. The
exit program (or exit procedure) is explained in 5.7.5.3, “Process a path name exit
program” on page 290.

The following structure definition is provided to pass the exit program name or
procedure pointer to the API. A pointer to the structure definition is required by
the API. This structure definition is based on the one found in the member
QP0LSTDI of the source file QSYSINC/QRPGLESRC from the System openness
include licensed program:

* PRCSUBTRDF from SWEEPSRC in RPGISCOOL (part 3 of 3)
* Qp0lProcessSubtree() API user function structure def. 4
DQP0LUF DS
* Qp0l User Function type
D QP0FT 10I 0 INZ(0)
* Procedure or program
* type flag
D QP0BRARY 10 INZ(*BLANK)
* Program library
D QP0OGRAM 10 INZ(*BLANK)
* Program name
D QP0HDACN 1 INZ(X'00')
* Multithread action
D QP0ERVED19 7 INZ(*ALLx'00')
* must be zero
D QP0LPS * PROCPTR
* Procedure pointer

The Function type flag QP0FT must be initialized to zero if a subprocedure is
used as the exit program. Or, QP0FT must be initialized if a program is used
instead. The program name/library and the procedure pointer fields are mutually
288 Who Knew You Could Do That with RPG IV?

exclusive. The User function parameter is formatted and passed to the API in the
sample program using the following instructions:

* Qp0lProcessSubtree prototypes 2
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRPR
...
* Qp0lProcessSubtree Type Definitions 4
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRDFprcsubtrdf
...
* Field definition for parameters of Qp0lProcessSubtree 5
D UserFunction@ S * Inz(%addr(QP0LUF))
...
* Initialize the Procedure Pointer with the pointer 14
C Eval QP0FT = 0
C Eval QP0LPS = %paddr('SweepExit')
* Initialize the UserFunction to UserFunction structure.
C Eval UserFunction@ = %addr(QP0LUF)
...

Because our sample program is using a subprocedure for the process a path
name exit program, the prototype of the subprocedure must be defined in the
main source. In our example, the member PRCSUBTRPR contains the
subprocedure prototype listed in 5.7.5.3, “Process a path name exit program” on
page 290.

You can find more information on the process a path name exit program (or exit
subprocedure) and its prototype in the following section. In this example, the
subprocedure used as an exit program of the API is exported and is part of a
different module. This module needs to be bound to the main module at the
program creation. The subprocedure can also be part of the main module or
placed in a service program. Only the prototype allows the memory location of the
subprocedure to be mapped to the pointer parameter required by the structure
definition.

Function control block
The function control block is a memory location where any kind of data can be
passed from the API calling program to the exit program. This parameter is
mainly used for communication between the calling program and the exit program
and not processed by the API. For this sample program, we passed a 100-byte
data variable directly from the input parameter to the exit program.

The data is passed to the API using the memory location of the variables as a
pointer. The Function Control block parameter is formatted and passed to the API
in the sample program using the following instructions:

* Input parameters for program 1
D Sweep PI
...
D FuncCtrlBlk 100A
...
* Field definition for parameters of Qp0lProcessSubtree 5
D FuncCtrlBlk@ S * Inz
...
* Initialize the Function control block pointer 15
C Eval FuncCtrlBlk@ = %addr(FuncCtrlBlk)

As the API requires a pointer, the memory location of the input parameters
FuncCtrlBlk is passed as a pointer in variable FuncCtrlBlk@. This parameter can
be initialized to a null value if no values are required to be passed between the
API and the process of a path name exit program.

Please refer to the Qp0lProcessSubtree() API documentation in System API
Reference OS/400 UNIX-Type APIs, SC41-5875, in the chapter "Integrated File
289

System APIs", for more information on thoses parameters and the regular ones
not using pointers.

5.7.5.3 Process a path name exit program
The Process a path name exit program is a user-specified exit program that is
called by the Qp0lProcessSubtree() function for each object in the API's search
that meets the caller's selection criteria. This exit program can be a subprocedure
or a program. In our sample program, we used a subprocedure placed in an
external module as the API exit program. This subprocedure will be invoked for
each object selected by the API and prints the path name along with the function
control block text passed by the API in a spooled file. The subprocedure also
handles a spooled file header and footer, plus errors which occur during the
object selection.

Table 75 shows the parameters for this function. These parameters must be
defined in the prototype used to call this API.

Table 75. Required parameters for the Process a path name exit program

Here’s an example of the prototype used to map thoses parameters:

* PRCSUBTRPR from SWEEPSRC in RPGISCOOL (part 2 of 2)
* Process a Path name Exit Pgm prototype 2
* Defined as per System API Reference - OS/400 UNIX-Type APIs manual
D SweepExit PR ExtProc('SweepExit')
D SelectStatus * Value
D ErrorValue * Value
D ReturnValue * Value
D ObjectName * Value
D FCBPointer * Value

All of these parameters are pointers passed by the API. In our sample program,
we map the memory locations using the following instructions:

* Qp0lProcessSubtree prototypes 19
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRPR
...
* Subprocedure declaration 19
D SweepExit PI
D SltStatus@ * Value
D ErrorValue@ * Value
D ReturnValue@ * Value
D PathName@ * Value
D FuncCtrlBlk@ * Value

* Path name structure based from QSYSINC/QRPGLESRC,QLG 20
D QLGPN DS Based(PathName@)
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 *
D Object S 16000C Based(QLGPN00)

* Input parameters 21
D SltStatus S 10I 0 BASED(SltStatus@)
D ErrorValue S 10I 0 BASED(ErrorValue@)
D FuncCtrlBlk S 100A BASED(FuncCtrlBlk@)

Argument Description Use RPG data type C data type

SltStatus Selection Status Pointer Input * Binary(4)

ErrorValue Error Value pointer Input * Binary(4)

ReturnValue Return Value pointer Output * Binary(4)

PathName Object name pointer Input * Char(*)

FuncCtrlBlk Function control block
pointer

Input * Char(*)
290 Who Knew You Could Do That with RPG IV?

* Output parameter
D ReturnValue S 10I 0 INZ(0)
...
* Return value pointer initialization 26
C Eval ReturnValue@ = %addr(ReturnValue)

The parameters used are explained in the following sections.

Selection status and error value
The selection status parameter contains the value of zero when the exit program
is invoked without any problems encountered during the selection done by the
API. After the last object was processed, the API calls back the exit program with
a value of 1 in the selection status parameter indicating that it is the last call to
the exit program. The selection status parameter has other values in case of
problems encountered during the selection processing. The errorvalue pointer is
used to indicate the error number.

Path name
The path name pointer passed to the exit program contains the path name of the
object selected by the API to be processed. This memory location needs to be
mapped to the path name structure, as defined in 5.7.3.1, “Path name structure
or path name format” on page 254. Three particularities to the path name passed
to the exit program are:

• The path name within the path name structure contains a pointer to a memory
location where the path name text is specified. This memory location needs to
be mapped to a path name variable, as Object, in our example, with a
sufficient variable length to contain the path name.

• The path name passed by the API is always in a Unicode character set
(UCS-2) since IFS APIs handle path names in Unicode. The environment
attributes of the path name structure (CCSID, country ID, and language ID)
reflect the path name structure. As Unicode is a double-byte character set, the
variable length needs to be double compared to a regular one-byte character
field.

• The path name length also reflects the size of the path name in unicode, as
twice as high as if it would be a regular character field. The %subst function
(all the string functions, in fact) in RPG IV expects the length to be the number
of characters, not the number of bytes. If you have a Unicode length
measured in bytes, it must be divided by 2 to get the number of Unicode
characters, as shown in the following example:

C Eval Object132 = %subst(Object : 1 :
C %div(QLGPL:2))
291

As discussed, RPG IV handles a Unicode character string at V4R4. If you are
running an earlier version of OS/400 and receiving Unicode data from the IFS
APIs, you need to convert the data using a national language conversion API.
The API is iconv()–Code Conversion API, which needs to be used in conjunction
with QtqIconvOpen()–Code Conversion Allocation API and iconv_close()–Code
Conversion Deallocation API. These APIs are documented in System API
Reference OS/400 National Language Support APIs, SC41-5863.

Return value
The return value pointer needs to map to a memory location represented by a 4
byte binary or a 10-digit signed integer value variable. The value of this variable
can be 0 for a successful completion of the exit program, -1 for successful
completion, but the API should skip the rest of the objects in the current directory,
or greater than zero if an error occurred in the exit program.

Function control block
The function control block pointer maps to a memory location where the data has
been stored by the program calling the API. The pointer parameter should be
mapped to the same variable type and length as the original one, although data
type compatibility is allowed.

5.7.5.4 Anatomy of the sample program SWEEP
As described in 5.7.5.1, “Overall concept of the sample program SWEEP” on
page 280, this sample program scans directories on the Integrated File System
and calls an exit program for any object found that matches the selection criteria.
The selection criteria is specified using a command object. The output of the
program is a spooled file listing all the objects found.

Here is an abstract of the ILE RPG for AS/400 Reference, SC09-2508, which
lists the V4R4 enhancements regarding the support of the Universal Character
Set Version 2 (UCS-2) or Unicode support in RPG IV:

• The UCS-2 (Unicode) character set can encode the characters for many
written languages. The field is a character field whose characters are two
bytes long.

• By adding support for Unicode, a single application can now be developed
for a multinational corporation, minimizing the necessity to perform code
page conversion. The use of Unicode permits the processing of characters
in multiple scripts without the loss of integrity.

• Support for conversions between UCS-2 fields and graphic or single-byte
character fields using the MOVE and MOVEL operations, and the new
%UCS2 and %GRAPH built-in functions.

• Support for conversions between UCS-2 fields or graphic fields with
different Coded Character Set Identifiers (CCSIDs) using the EVAL, MOVE,
and MOVEL operations, and the new %UCS2 built-in function.

Unicode support in RPG IV
292 Who Knew You Could Do That with RPG IV?

Main program outline
Here is the outline of the Sweep main program used for our sample program:

• Field declarations

1 Declare the prototype and procedure interface for the input parameters.

2 Declare the Qp0lProcessSubtree API prototype for the API interface

3 Include the path name structure as a data structure where the header and
path name field are defined in the main procedure. For more information,
refer to 5.7.3.1, “Path name structure or path name format” on page 254.

4 Include the structure definitions for some of the pointer type parameters of
the Qp0lProcessSubtree API such as the object type array, the
In_Exclusion list, and the User function parameters. The size of the arrays
included within these structure definitions are defined by using constant
fields declared in the main procedure.

5 Declare a variable used to store the API parameters.

6 Declare the prototype used to call the DspError subprocedure in case it
occurred during API processing.

7 Declare standalone fields for numeric to character translation, among
other types, and initialize the path name constant.

• Main process

8 Initialize the input path name parameter and the associated length into a
Pathname variable so the memory location can be passed to the API using
a pointer. For more information, please refer to “Path name” on page 284.

9 Initialize the Subtreelevel unsigned numeric parameter with the
Subtreeparm signed numeric parameter passed by the command.

10 Initialize the object type array pointer with the object type information
passed by the command, using the object type structure definition. If no
specific object types were requested, the pointer is initialized to a null
value. For more information, refer to “Array of object types” on page 285.

11 Initialize the LocalRemote numeric parameter by using the LocalRmt
character variable passed by the command.

12 Initialize the In_Exclusion list pointer with the Inclusion or Exclusion list
passed by the command, using the In_Exclusion list structure definition.
This parameters uses an array of pointers mapped to the array
InExclusionPN in the main procedure. If no list of objects is requested, the
pointer is initialized to a null value. For more information, refer to
“IN_Exclusion list” on page 286.

13 Initialize the Errrecovery numeric parameter using the ErrorRcv character
variable passed by the command.

14 Initialize the User function pointer with the %paddr built-in function on the
subprocedure name as declared in the subprocedure prototype. The exit
program type parameter Qp0FT is also initialized and the memory location
of the structure definition Qp0LUF is passed to the parameter as a pointer.
For more information, refer to “User function pointer” on page 288.

15 The Function control block pointer parameter is initialized with the memory
location of the user text passed by the command. For more information,
refer to “Function control block” on page 289.
293

16 The Qp0lProcessSubtree is called and receives the return value in the
variable Rc.

17 Display the proper message depending on the return value content. For
more information on the return value, check the exit program at 26.

Exit program outline
Here is the outline of the SweepExit subprocedure used as the exit program is
used in our sample program:

• File and fields declarations

18 Printer file declaration.

19 Subprocedure prototype and procedure interface for input parameters of
the exit program.

20 Include the path name structure as a data structure, where the header
and path name field are defined in the main procedure. The path name is
defined as a pointer and the variable Object of type Unicode is used to
map the memory location. For more information, refer to 5.7.3.1, “Path
name structure or path name format” on page 254.

21 Declare a variable used to store the pointer parameters received from the
API and the return value pointer passed back to the API. The return value
is initialized to 1 (error occurred) and changes to zero upon successful
completion of the exit program.

22 Initialize standalone fields used in the subprocedure, mainly in the
spooled file produced by the exit program. The HeaderPrint variable has
been declared as Static, so it will exist and keep its value if the exit
program is called again (instead of being initialized every time the exit
program is called).

• Main process

23 Print the header of the spooled file on the first execution of the
subprocedure.

24 If no error is reported by the API, retrieve the first 132 bytes of the path
name from the path name structure into unicode format. Move the 132
bytes path name and the function control block text into print variables
and print the detail entry. Refer to 5.7.5.3, “Process a path name exit
program” on page 290, for more information on Unicode support.

25 If it is the last call to the exit program, it initializes the successful message
text to print in the footer. In case an error occurred in the object selection,
retrieve the error message using the strerror C runtime function, display
the error message, and print the error text. In both cases, print the footer,
and close the opened file.

26 Initialize and return the successful return value to the API. In a more
complex program code, the successful return value is initialized after an
error validation function.

The sample code
The following section includes the complete sample code used in the Sweep
sample program. This sample application is made of multiple modules, a printer
file, and multiple /COPY members, which are described as follows:
294 Who Knew You Could Do That with RPG IV?

• The main module
• The exit program subprocedure module
• The Exit program printer file
• The User created command object
• The main module prototype (/COPY member)
• The path name structure definition (/COPY member)
• The prototypes for Qp0lProcessSubtree API (/COPY member)
• The Qp0lProcessSubtree API structure definitions
• The DspError subprocedure prototype
• The DspError subprocedure module

Main SWEEP module
The filename for the main module is SWEEP. Refer to the previous sections for
explanations of the code markers:

* SWEEP from IFSSRC in RPGISCOOL

* Module name: SWEEP
*
* This program demonstrate the usage of the Qp0lProcessSubtree API
* which scan the Integrated File system on selection criteria
* passed to the program by a command object. The API will call
* a subprocedure as the API Exit Program (Process a path Name Exit
* program), which will print the object found.
*
* *** Module needs to be bind with modules DSPERROR and SWEEPEXIT
* on program creation

H option(*SRCSTMT) bdndir('QC2LE')

* Program prototypes 1
/COPY RPGISCOOL/SWEEPSRC,SWEEPPR

* Input parameters for program 1
D Sweep PI
D InputPath 100A
D SubtreeParm 1S 0
D ObjTypes 662A
D LocalRMT 1A
D In_ExclusionT 1A
D In_ExclusionP 1002A
D ErrorRcv 1A
D FuncCtrlBlk 100A

* Path name structure based from QSYSINC/QRPGLESRC,QLG 3
D QLGPN DS
/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 100A

* Qp0lProcessSubtree prototypes 2
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRPR

* Array size constants for structure definitions

Notice that this program uses the commercial at (@) to indicate that the
variable is a pointer. This breaks the style guide rule found in 2.1.3.3, “Avoid
using special characters (for example, @, #, $) when naming items” on page
22.

Avoid the "@" symbol to indicate the variable is a pointer. A good method is to
use the "Hungarian Notation", where the first character of the variable name
indicates the data type of the variable, for example, pCustNbr or cActStsCde.

An exercise for you
295

D QP0TYPES_C C 66
D Qlg_Path_NameC C 10
* Qp0lProcessSubtree Type Definitions 4
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRDF
* For Array of pointers initialization
D InExclusionPN S Like(QLGPN) DIM(Qlg_Path_NameC)

* Field definition for parameters of Qp0lProcessSubtree 5
D PathName@ S * Inz(%addr(PathName))
D PathName S LIKE(QLGPN)
D SubtreeLevel S 10U 0 INZ(0)
D ObjtypeArray@ S * Inz(%addr(QP0LOL))
D LocalRemote S 10U 0 INZ(0)
D InExclusion@ S * Inz(%addr(QP0INEXL))
D ErrRecovery S 10U 0 INZ(0)
D UserFunction@ S * Inz(%addr(QP0LUF))
D FuncCtrlBlk@ S * Inz

* Prototypes requires for DspError subprocedure 6
/COPY RPGISCOOL/SWEEPSRC,ERRPROTO

*Stand-Alone fields 7
D DS
D ObjTypes2 1 2A
D ObjTypesN 5I 0 Overlay(ObjTypes2)
D DS
D InExcl2 1 2A
D InExclN 5I 0 Overlay(InExcl2)

D SuccessMsg C 'Qp0lProcessSubtree() Successful'
D UnsuccessMsg C 'ERROR on Qp0lProcessSubtree()'

D Rc S 10I 0 INZ(0)
D Idx S 5P 0

* Initialize the Path Name constants
C Eval QLGCCSID02 = 37
C Eval QLGCID = 'US'
C Eval QLGLID = 'ENU'
C Eval QLGERVED07 = *ALLx'00'
C Eval QLGPT = 0
C Eval QLGPND = x'6100'
C Eval QLGRSV200 = *ALLx'00'

* Initialize the Input Path Name variable 8
C If InputPath <> *blank
C Eval QLGPL = %len(%trim(InputPath))
C Eval QLGPN00 = %subst(InputPath : 1 : QLGPL)
C Eval PathName = QLGPN
* No path name specified
C Else
C Eval PathName@ = *NULL
C Endif

* Subtree parameter initialization 9
C Eval SubtreeLevel = SubtreeParm

* Initialize Object Type Array to *NULL if no ObjType 10
C Eval ObjTypes2 = %subst(ObjTypes : 1 : 2)
C Eval QP0NBROO00 = ObjTypesN

C For Idx = 1 to QP0NBROO00
C Eval QP0TYPES(Idx) = %subst(ObjTypes :
C (10 * idx) -7 : 10)
* Add Null character if no special values used
C If QP0TYPES(Idx) <> '*ALLSTMF' and
C QP0TYPES(Idx) <> '*ALLDIR' and
C QP0TYPES(Idx) <> '*MBR'
C Eval QP0TYPES(Idx) = QP0TYPES(Idx) + x'00'
C EndIf
C EndFor
* Map pointer to *NULL for default
C If QP0NBROO00 = 0 or QP0TYPES(1) = '*ALL'
C Eval ObjtypeArray@ = *NULL
C End

* LocalRemote parameter initialization 11
C Move LocalRmt LocalRemote
296 Who Knew You Could Do That with RPG IV?

* Initialize In_Exclusion parameter 12
C If In_ExclusionT <> *blank
C Move In_ExclusionT QP0INEX
C Eval InExcl2 = %subst(In_ExclusionP : 1 : 2)
C Eval QP0NBROP = InExclN
C For Idx = 1 to QP0NBROP
C Eval QLGPN00 = %subst(In_ExclusionP :
C (100 * idx) - 97 : 100)
C Eval QLGPL = %len(%trim(QLGPN00))
C Eval InExclusionPN(Idx) = QLGPN
C Eval Qlg_Path_Name(Idx) =
C %addr(InExclusionPN(Idx))
C EndFor
C EndIf
C If QP0NBROP = 0
C Eval InExclusion@ = *NULL
C Endif

* Error Recovery parameter initialization 13
C Move ErrorRcv ErrRecovery

* Initialize the Procedure Pointer with the pointer of the subprocedure
C Eval QP0FT = 0
C Eval QP0LPS = %paddr('SweepExit')
* Initialize the UserFunction to UserFunction structure. 14
C Eval UserFunction@ = %addr(QP0LUF)

* Initialize the Function control block pointer 15
C Eval FuncCtrlBlk@ = %addr(FuncCtrlBlk)

* Calling the Qp0lProcessSubtree API, receiving return code in RC 16
C Eval Rc = ProcessSubtree(PathName@ :
C SubtreeLevel : ObjtypeArray@ :
C LocalRemote : InExclusion@ :
C ErrRecovery : UserFunction@ :
C FuncCtrlBlk@)

C If RC = 0
* Successful execution 17
C Successmsg Dsply
C Else
* Display error msg
C CallP DspError('PRCSubTree')
C UnsuccessMsg Dsply
C EndIf

* End of program
C Eval *InLr = *On

The SWEEPEXIT exit program
The filename for the exit program module is SWEEPEXIT. Refer to the previous
sections for explanations of the code markers:

* SWEEPEXIT from IFSSRC in RPGISCOOL
* Subprocedure for exit program of the Qp0lProcessSubtree API

H NoMain option(*SRCSTMT) bnddir('qc2le')

* Printer file external definition 18
FSweepPrtf O E PRINTER OFLIND(*In50)

* Qp0lProcessSubtree prototypes
/COPY RPGISCOOL/SWEEPSRC,PRCSUBTRPR

* Subprocedure declaration 19
P SweepExit B Export

D SweepExit PI
D SltStatus@ * Value
D ErrorValue@ * Value
D ReturnValue@ * Value
D PathName@ * Value
D FuncCtrlBlk@ * Value

* Path name structure based from QSYSINC/QRPGLESRC,QLG 20
D QLGPN DS Based(PathName@)
297

/COPY RPGISCOOL/SWEEPSRC,PATHNAMEDF
D QLGPN00 *
D Object S 16000C Based(QLGPN00)

* Input parameters 21
D SltStatus S 10I 0 BASED(SltStatus@)
D ErrorValue S 10I 0 BASED(ErrorValue@)
D FuncCtrlBlk S 100A BASED(FuncCtrlBlk@)

* Output parameter
D ReturnValue S 10I 0 INZ(1)

* Stand-ALone fields 22
D Object132 S 264C Inz(*BLANK)
D SuccessMsg C 'End of report'
D UnsuccessMsg C 'An error has occured...'
D HeaderPrint S N Static Inz(*off)

D errorMsg@ S * Inz
D errorMsg S 100A Based(errorMsg@)
D errortxt S 52A Inz(*blank)

* Prototypes requires for strError function
/Copy RPGISCOOL/IFSSRC,ERRPROTO

* If first time called or page overflow, print header 23
C If not HeaderPrint or *in50 = *on
C Write SWEEPH
C Eval HeaderPrint = *On
C Eval *in50 = *off
C EndIf

* Selection Status = 0 (QP0L_SELECT_OK)
C If SltStatus = 0

* If ObjectName@ contains a valid pointer, substring 24
* for non-unicode length
C If PathName@ <> *NULL
C Eval Object132 = %subst(Object : 1 :
C %div(QLGPL:2))

* Conversion from UCS-2 (Unicode) to single byte character field
* done by MOVE at V4R4
* (Shown as example only as RPG IV is able to print an UCS-2 type field)
C Movel Object132 ObjectPrt
C Movel FuncCtrlBlk Text
C Else

* If ObjectName@ doesn't contains pointer
C Eval ObjectPrt = 'Null pathname'
C EndIf

* Print Function Control Block passed from main and pathname
C Write(E) SWEEPD

* Select Status isn't OK
C Else

* Selection is done (last call) 25
C If SltStatus = 1
C Eval Text = SuccessMsg
C Else

* An error has occured during the selection,
* retrieve and display the error message
C Eval errorMsg@ = StrError(ErrorValue)
C Eval errortxt = 'SweepExit' + '->' +
C %char(ErrorValue)
C + ':' + %subst(errormsg : 1 : 37)
C errortxt Dsply
C Eval Text = UnSuccessMsg
C EndIf

* Writing Footer and closing printer file
C Write(E) SweepE
C Close(E) SweepPrtf

C Endif
298 Who Knew You Could Do That with RPG IV?

* Return value pointer initialization 26
C Eval ReturnValue = 0
C Eval ReturnValue@ = %addr(ReturnValue)

P E

The exit program printer file
This is the printer file used by the SWEEPEXIT exit program:

* SWEEPPRTF from IFSSRC in RPGISCOOL 18
A R SWEEPH SKIPB(1) SPACEA(2)
A 50'Process SubTree results'
A 120DATE(*JOB) EDTCDE(Y)
A 120TIME SPACEB(1)
A R SWEEPD SPACEB(1)
A TEXT 100 1
A OBJECTPRT 132 1SPACEB(1)
A R SWEEPE SPACEB(2)
A TEXT 100 1

The user created command SWEEPC
The filename for the command source file is SWEEPC:

/* SWEEPC from IFSSRC in RPGISCOOL
/* Command definition for MERGESTMF program */

CMD PROMPT('Process subtree')
PARM KWD(PATHNAME) TYPE(*PNAME) LEN(100) +

PROMPT('Starting path name' 1)
PARM KWD(SUBTREE) TYPE(*LGL) RSTD(*YES) DFT(*YES) +

SPCVAL((*YES '0') (*NO '1')) +
PROMPT('Process Subdirectories' 2)

PARM KWD(OBJTYPES) TYPE(*CHAR) LEN(10) DFT(*ALL) SNGVAL((*ALL)) +
MIN(0) MAX(66) PGM(*YES) CHOICE('Object Type, *ALL') +
PROMPT('Object Types' 3)

PARM KWD(LOCALRMT) TYPE(*CHAR) LEN(1) RSTD(*YES) DFT(*ALL) +
VALUES(0 1 2) SPCVAL((*ALL '0') (*LCL '1') (*RMT '2')) +
CHOICE('*ALL, *LCL, *RMT') +
PROMPT('Local or Remote Objects' 4)

PARM KWD(INEXCLUTY) TYPE(*CHAR) LEN(1) RSTD(*YES) DFT(*NONE) +
VALUES(' ' 0 1) SPCVAL((*NONE ' ') (*INCL '0') (*EXCL '1')) +
CHOICE('*NONE, *INCL, *EXCL') PROMPT('IN_EXclusion type' 5)

PARM KWD(INEXCLUPN) TYPE(*PNAME) LEN(100) MIN(0) MAX(10) +
PMTCTL(INEXCL) PROMPT('IN_EXclusion Directory' 10)

PARM KWD(ERRORRCV) TYPE(*CHAR) LEN(1) RSTD(*YES) +
DFT(0) VALUES(0 1 2 3 4) MIN(0) +
PROMPT('ErrorRecovery Action' 6)

PARM KWD(USERTEXT) TYPE(*CHAR) LEN(100) +
PROMPT('User Function Text' 7)

INEXCL: PMTCTL CTL(INEXCLUTY) COND((*NE ' '))
DEP CTL(&PATHNAME *NE ' ') PARM((&INEXCLUTY *NE '0'))
DEP CTL(&PATHNAME *EQ ' ') PARM((&INEXCLUTY *EQ '0'))

Main module prototype
The member name for the main module prototype used for Input parameters
definition is SWEEPPR:

* SWEEPPR from IFSSRC in RPGISCOOL
* Prototype for Sweep program 1
D Sweep PR Extpgm('SWEEP')
D InputPath 100A
D SubtreeParm 1S 0
D ObjTypes 662A
D LocalRemote 1A
D In_ExclusionT 1A
D In_ExclusionP 1002A
D ErrorRcv 1A
D FuncCtrlBlk 100A

Path name structure definition
The member name for the path name structure definition is PATHNAMEDF. The
complete source code can be found in 5.7.3.1, “Path name structure or path
name format” on page 254.
299

Prototype for the Qp0lProcessSubtree API exit program
The member name for the Qp0lProcessSubtree API and the associated exit
program "Process a path name" is PRCSUBTRPR. The API prototype source
code can be found in 5.7.5.2, “The Qp0lProcessSubtree() API” on page 282. The
exit program prototype source code can be found in 5.7.5.3, “Process a path
name exit program” on page 290. Both prototypes should be merged into the
same member.

The Qp0lProcessSubtree structure definition
The member name for the Qp0lProcessSubtree structure definition is
PRCSUBTRDF. This member should include the structure definition of three
pointer parameters used to call the API. The three definitions are:

Array of Object type: Described in “Array of object types” on page 285.
In_Exclusion list: Described in “IN_Exclusion list” on page 286.
User Function pointer: Described in “User function pointer” on page 288.

Prototype for the DspError subprocedure
The member name for the DspError subprocedure, used to display error
messages and to call C runtime function related to error handling, is ERRPROTO.
The complete source code of prototypes can be found in “Prototype for the
DspError subprocedure” on page 301.

DspError subprocedure
The DSPError module is used to display error messages that occur during API
processing. The subprocedure retrieves the content of the errno variable and
retrieves the associated text. Both information, plus a text location input
parameter, is displayed on the screen. This external module needs to be bound at
program creation time with the main module. More information on the DspError
subprocedure can be found in 5.7.6.2, “The DspError subprocedure” on page
301.

The following commands can be used to create the sample application on your
system:

CRTRPGMOD MODULE(RPGISCOOL/SWEEP) SRCFILE(RPGISCOOL/SWEEPSRC)
CRTPRTF FILE(RPGISCOOL/SWEEPPRTF) SRCFILE(RPGISCOOL/SWEEPSRC)
CRTRPGMOD MODULE(RPGISCOOL/SWEEPEXIT) SRCFILE(RPGISCOOL/SWEEPSRC)
CRTPGM PGM(RPGISCOOL/SWEEP) MODULE(RPGISCOOL/SWEEP RPGISCOOL/SWEEPEXIT
RPGISCOOL/DSPERROR)

Do not forget to also create the DspError module, discussed in “The DspError
subprocedure” on page 302, which is used to display error messages
(described in “DspError subprocedure” on page 300).

Also, the IFS APIs and the C runtime functions are included in a binding
directory named QC2LE. We chose to specify the binding directory (BDNDIR)
on the H-Spec of our modules. Instead, the binding directory can be explicitly
specified on the CRTPGM command.

You can use the user created command as described in 5.7.5.1, “Overall
concept of the sample program SWEEP” on page 280, to call the program.

Try it yourself
300 Who Knew You Could Do That with RPG IV?

5.7.6 IFS APIs error reporting
The UNIX-type APIs described in System API Reference OS/400 UNIX-Type
APIs, SC41-5875, support APIs that use errno to report error conditions. This
section defines how to retrieve these errors when using UNIX-type APIs in RPG
IV.

5.7.6.1 Description of the errno value
The UNIX-type APIs, as described earlier, are mostly C functions. All these
functions include the <errno.h> include file in their code. This include file defines
macros that are set to the errno variable. The <errno.h> include file defines
macros for values that are used for error reporting in the C library functions and
defines the macro errno. An integer value can be assigned to errno, and its value
can be tested during run time.

When an error occurs during the API processing, these C functions set errno to
specific values, depending on the type of error.

Your program can use the __errno() and the strerror() to retrieve the error value
and message text to display or print them. The strerror() function returns a pointer
to an error message string that is associated with errno. The __errno() and
strerror() functions should be used immediately after a function is called since
subsequent calls may alter the errno value.

The list of the errno values that can be set by a specific API are usually described
in the API documentation. The list of all the errno values can be found in Chapter
14, "Errno Values for UNIX-Type Functions" in the System API Reference OS/400
UNIX-Type APIs, SC41-5875.

ILE C Programmer's Guide, SC09-2712, contains more information on the errno.
This manual suggest that you use the perror() function to print the error number
value. We decided to use the DSPLY operation code, instead, since the perror
brings a C interface (strerr), which is not compliant with the RPG style.

5.7.6.2 The DspError subprocedure
In the two previous sample applications, a subprocedure named DspError was
used to retrieve the error number created when a problem occurred with the IFS
APIs processing and to retrieve the message text associated with this error
number. The subprocedure displays text as the input parameter, the error
number, and the first 37 bytes of the associated message text.

We used the following two C runtime functions in the subprocedure to handle the
errno value set by the IFS APIs. Both of these are described in the ILE C for
AS/400 Run-Time Library Reference, SC41-5607.

__errno() Values for IFS Enabled C Stream I/O
strerror() Set Pointer to Runtime Error Message C function

Prototype for the DspError subprocedure
Here is the prototype used for the input parameter of the subprocedure:

* ERRPROTO from IFSSRC in RPGISCOOL
* Prototype for DspError subprocedure
DDspError PR Extproc('DspError')
D text 10A Const
301

One parameter is received by the subprocedure. The 10-byte text variable is
displayed on the screen and is used to indicate a marker in the calling program
where the error occurred.

Prototypes for the error handling APIs
Here are the prototypes for the two APIs used in our sample program:

* ERRPROTO from IFSSRC in RPGISCOOL
* Prototype for __errno() and strerror()
* From the ILE C for AS/400 Run-Time Library Reference
DGetErrNo PR * Extproc('__errno')

DStrError PR * ExtProc('strerror')
D errorNo 10I 0 Value

The __errno() function returns the memory location of the value of the errno field.
The strerror() function uses this value to retrieve the memory location of the
message text associated with this error number.

The DspError subprocedure
Here is the sample code of the DspError subprocedure. This subprocedure needs
to be bound with the module using it.

* DSPERROR from IFSSRC in RPGISCOOL
**
*Subprocedure: DspError
*
* Uses to display the error nbr, the error text and a location
* parameter using the DSPLY (display) op-code
**

H nomain BNDDIR('QC2LE')

/Copy RPGISCOOL/IFSSRC,ERRPROTO

PDspError B Export
DDspError PI
D text 10A Const

* Variables for __errno() and strerror() APIs
DerrorNo@ S * Inz
D errorNo S 10I 0 Based(Errorno@)
DerrorMsg@ S * Inz
D errorMsg S 100A Based(errorMsg@)
Derrortxt S 52A Inz(*blank)

C Eval errorNo@ = GetErrNo
C Eval errorMsg@ = StrError(errorNo)
C Eval errortxt =%trim(text) + '->' +
C %char(errorNo)
C + ':' + %subst(errormsg : 1 : 37)
C errortxt Dsply
P E
302 Who Knew You Could Do That with RPG IV?

5.7.7 More information about IFS APIs in RPG IV
Multiple articles and coding examples have been written on using the IFS APIs in
RPG, and most of them are available on the Internet. Here is a list of a few of
them:

• "RPG and COBOL integrated file system code examples" can be found on the
AS/400 Information Center found at: http://www.as400.ibm.com/infocenter

Once you reach the Information Center, select Database and File Systems,
and then Integrated file system. You should find Example: RPG code
snippets under Examples.

• "Adding High-Level Math to RPG IV, Interfacing with the C Language is easy
with prototypes" can be found on the RPG Developer Network News on
RPGIV.com at: http://www.rpgIV.com/rpgnews/Feb99a/highmath.html

• "Stealing Time, The Easy Way to Format a Date or Time Value" can be found
on the RPG Developer Network News on RPGIV.com at:
http://www.rpgIV.com/rpgnews/Feb99b/timerpg.html

5.8 User exit programs

This section discusses tips and techniques on using RPG programs as user exit
programs. User exit programs are used in conjunction with OS/400 exit points in
the System Registration Information. An FTP client/server request validation
program is used as a programming example in this section.

5.8.1 The system registry
The registration facility provides a central point to store and retrieve information
about OS/400 and non-OS/400 exit points and their associated exit programs.
This information is stored in the registration facility repository and can be
retrieved to determine which exit points and exit programs already exist.

You can use the registration facility APIs to register and de register exit points, to
add and remove exit programs, and to retrieve information about exit points and
exit programs. You can also perform some of these functions by using the Work
with Registration Information (WRKREGINF) command.

An exit point is the point in a system function or program where control is turned
over to one or more exit programs to perform a function. The exit point provider is
responsible for defining the exit point information, defining the format in which the

You can use the following commands to create the DSPError module, which
contains the DSPError external subprocedure:

CRTRPGMOD MODULE(RPGISCOOL/DSPERROR) SRCFILE(IFSSRC)

Don’t forget to bind this module with the main module on the program object
creation. Also, the IFS APIs and the C runtime functions are included in a
binding directory named QC2LE. We chose to specify the binding directory
(BDNDIR) on the H-Spec of our modules. The binding directory can be
explicitly specified on the CRTPGM command.

DSPError module creation
303

exit program receives data, and calling the exit program. Of course, these exit
programs can be written in RPG IV!

5.8.2 The FTP client/server validation request exit points
The FTP client/server request validation exit program gives you control over
whether an operation (an FTP subcommand) is allowed or rejected. Decisions
made by exit programs are in addition to any validation performed by the FTP
client/server application. The FTP client/server request validation exit program is
called each time one of these requests are processed within an FTP session:

• Session initialization
• Directory/library creation
• Directory/library deletion
• Setting current directory
• Listing file names
• File deletion
• Sending a file
• Receiving a file
• Renaming a file
• Executing a CL command on the FTP server

The exit point used in our example for this function is the FTP server request
validation QIBM_QTMF_SERVER_REQ. The parameter format VLRQ0100 is
used by this exit point to pass parameters to the exit program.

Four different TCP/IP applications share the VLRQ0100 interface through their
own exit points. Our sample program can be used without modifications for all of
them. The first parameter identifies which application is calling the exit point, and
therefore the exit program. These application identifiers are:

• FTP client program (QIBM_QTMF_CLIENT_REQ)
• FTP server program (QIBM_QTMF_SERVER_REQ)
• REXEC server program (QIBM_QTMX_SERVER_REQ)
• TFTP server program (QIBM_QTOD_SERVER_REQ)

Table 76 contains the required parameter format for the VLRQ0100 exit point
interface.

Table 76. Required parameter format for the VLRQ0100 exit point interface

Parameter Description Usage Type and length

1 Application identifier Input Integer(10)

2 Operation identifier Input Integer(10)

3 User profile Input Char(10)

4 Remote IP address Input Char(10)

5 Length of remote IP Address Input Integer(10)

6 Operation-specific information Input Char(*)

7 Length of operation-specific information Input Integer(10)

8 Allow operation Output Integer(10)
304 Who Knew You Could Do That with RPG IV?

The Allow operation parameter is considered as the return value passed from the
exit program to the exit point. The value of this parameter indicates that the FTP
server should reject or allow the requested operation.

The parameter descriptions can be found in the exit point documentation,
available on the AS/400 Information Center found at:
http://www.as400.ibm.com/infocenter

Once you reach the Information Center site, select TCP/IP, and then
Transferring files (FTP) and FTP security controls. The Application Identifier,
Operation Identifier, and Allow Operation (return value) parameters are defined in
the comments of our sample programs.

5.8.3 The FTP client/server request validation sample program
The client/server validation request exit program receives the parameters
described by the VLRQ0100 exit point interface for any of the exit points using
this format. This program uses the accounting code value, stored in the user
profile information, to validate the usage of the requester operation. The
accounting code is a 15-byte field which can be viewed, specified, or modified by
the regular OS/400 commands or APIs related to user profile, such as the Create
User Profile (CRTUSRPRF) and Change User Profile (CHGUSRPRF)
commands.

The sample program can support all the application identifiers stated previously,
using the same program at multiple exit points. Based on this support, this
program extensively uses the expression format available in RPG IV.

The format of the accounting code used by this program is described in Table 77.

Table 77. Format of the accounting code parameter

VLRQ0100
parameter

Parameter values Account
code index

Access values

Application ID 0 (FTP Client request) 1 0 = Never Allowed
1 = Allowed
9 = Always Allowed1 (FTP Server request) 2

2 (Rexec Server request) 3

3 (Tftp Server request) 4

Operation ID 0 (Initialize Session) 6 0= Not Allowed, All dir/lib
1= Only Client, All dir/lib
2= Only Server, All dir/lib
3= Only Rexec, All dir/lib
4= Only TFTP, All dir/lib
5= Only Client, Public dir/lib
6= Only Server, Public dir/lib
7= Only Rexec, Public dir/lib
8= Only TFTP, Public dir/lib
9= All functions, All dir/lib
A= All functions,Pub dir/lib
B= Client, All and Svr, Pub
C= Client, Pub and Svr, All
...

1 (Create Directory/Library) 7

2 (Delete Directory/Library) 8

3 (Set Current Library) 9

4 (List Directory/Library) 10

5 (Delete Files) 11

6 (Send Files) 12

7 (Receive Files) 13

8 (Rename Files) 14

9 (Execute CL command) 15
305

As you can see in Table 77, many additional Operation ID access value
combinations can be added. In the sample program (see “FTPRQSEXIT code
sample” on page 307), the possible values of the parameters passed by the exit
point are shown with marker 2. The possible values available for the access
mode in the accounting code are shown with marker 4.

The sample program uses the Retrieve User Information (QSYRUSRI) API,
hidden in the subprocedure RtvUsrPrf, to retrieve the accounting code from the
user profile ID passed as a parameter (see marker 8). For default users as
anonymous or QTCP, the default accounting code value has been coded directly
into the program (please see marker 5). The anonymous user ID is an FTP
feature that doesn’t require an ANONYMOUS user profile to exist on the system.
Since QTCP is a system user profile, we prefer not to modify the accounting code
on the user profile itself (user profile QTCP is used for any server request before
the FTP logon).

This program example is based on an example available on the AS/400
Information Center found at: http://www.as400.ibm.com/infocenter

Once you reach the Information Center site, select TCP/IP, and then
Transferring files (FTP) and FTP security controls. We decided to keep the
public directory and library validation, which are specified as a constant in the
definition specification (see marker 12). We know there may be a better way of
executing this validation, such as scanning the string for specific characters that
identify the type of directory instead of relying on the length of the field, but we
wanted to keep this part of the program as simple as possible.

Figure 34 on page 307 describes the outline of our sample program.
306 Who Knew You Could Do That with RPG IV?

Figure 34. FTP client/server validation request exit program flowchart

5.8.3.1 FTPRQSEXIT code sample
Here is the sample code. Refer to the program note for more explanation on the
code, using the markers as a reference:

* FTPRQSEXIT from EXITSRC in RPGISCOOL
* Program: FTPRQSEXIT FTP Client/Server Request Exit program
*
* This program can be use to restrict FTP functions on the AS/400.
* This program needs to be register in the following exit point:
* QIBM_QTMF_SERVER_REQ and QIBM_QTMF_CLIENT_REQ
* of the registration facility (WRKREGINF). It also receives
* its parameters from those exit points as described in the
* TCP/IP Configuration and Reference SC41-5420 manual.

H Option(*SrcStmt)

* Prototype and Procedure Interface for Input Parameters 1
/COPY RPGISCOOL/EXITSRC,FTPRQSPROT

D FtpRqsExit PI

Retrieve AcntCode
7

Does
AcntCode(ApplicID)

= NeverAllowed,
Alway sAllowed or

Allowed?
9

Nev erAllowedAlway sAllowed

Does
AcntCode(OpID)
Allow all directory

access?
10

Yes

Allowed (call Subroutine OpCode)

No

Does
AcntCode(OpID)

Allow public
directory access?

11

No

Yes

Does Public
Dir/Lib match the

Operation
Specif ic Inf o

passed?
12

No

Yes

Return:
Always Allow

Return:
Never Allow

Return:

Allow this time

Return:

Do Not Allow this time

Return:
Do Not Allow this time

Return:
Allow this time
307

D ApplicID 10I 0 CONST
D OpID 10I 0 CONST
D UsrPrf 10A CONST
D RmtIPAddr 10A CONST
D RmtIPAddrL 10I 0 CONST
D OpSpecInf 999A CONST
D OpSpecInfL 10I 0 CONST
D RV 10I 0

* Application ID values: 2
D FTPClientRqs C 0
D FTPServerRqs C 1
D RexecRqs C 2
D TftpRqs C 3
* Operation ID values:
D InitSession C 0
D CreateDirLib C 1
D DeleteDirLib C 2
D SetCurrentLib C 3
D ListDirLib C 4
D DeleteFiles C 5
D SendFiles C 6
D ReceiveFiles C 7
D RenameFiles C 8
D ExecuteCL C 9
* Return Value (RV) possible values
D NeverAllow C -1
D DontAllow C 0
D Allow C 1
D AllowAllw C 2

* Prototype for Retrieve User Information (QSYRUSRI) API 3
/COPY RPGISCOOL/EXITSRC,QSYRUSRIPR
* Parameters required
D RcvVar DS
D AcntCodeC 310 324A
D AcntCode 310 324A Dim(15)
D RcvVarL S 10I 0 Inz(324)
D FmtName S 8A Inz('USRI0300')
* Include Error Code Parameter structure definition
/COPY QSYSINC/QRPGLESRC,QUSEC

* Structure of the accounting code index: 4
* 1 = Client Request Allowed
* 2 = Server Request Allowed
* 3 = REXEC Request Allowed
* 4 = TFTP Request Allowed
* possibles values:
D NeverAllowed C '0'
D Allowed C '1'
D AlwaysAllowed C '9'
* 5 = Reserved
* 6 to 15 = (mapping the OpID index value (0 to 9))
* All = All directories or libraries
* Pub = Public directory or library (see pgm constants)
D AllNotAllowed C '0'
D OnlyClientAll C '1'
D OnlyServerAll C '2'
D OnlyRexecAll C '3'
D OnlyTftpAll C '4'
D OnlyClientPub C '5'
D OnlyServerPub C '6'
D OnlyRexecPub C '7'
D OnlyTftpPub C '8'
D AnyAll C '9'
D AnyPub C 'A'
D CltAllSvrPub C 'B'
D CltPubSvrAll C 'C'

* Program constants 5
D anonymous C 'ANONYMOUS '
D anonymousAC C '01xx20066060000'
D QTCP C 'QTCP '
D QtcpAC C '11xx90000000000'
D PublicLib C '/QSYS.LIB/ITSOIC400.LIB'
D PublicDir C '//ITSOIC.400'

* Prototype for xlate subprocedure 6
308 Who Knew You Could Do That with RPG IV?

/COPY RPGISCOOL/EXITSRC,XLATEPROT

* Set accouting code value 7
C Select
* If user profile is anonymous or QTCP, set default
* accounting code instead.
C When UsrPrf = Anonymous
C Eval AcntcodeC = AnonymousAC
C When UsrPrf = QTCP
C Eval AcntCodeC = QtcpAC
C Other
* Othwerwise, Retrieve the accounting code from 8
* user profile using QSYRUSRI API
C Eval QUSBPRV = 0
C CallP RtvUsrPrf (RcvVar : RcvVarL :
C FmtName : UsrPrf : QUSEC)
C EndSl

* Lookup general access in Accounting code using Application ID 9
* value as offset
C Select
C When AcntCode(ApplicID + 1) = NeverAllowed
C Eval RV = NeverAllow

C When AcntCode(ApplicID + 1) = AlwaysAllowed
C Eval RV = AllowAllw

C When AcntCode(ApplicID + 1) = Allowed
* Execute OpCode subroutine to validate specific operation on all
* or public directories
C Exsr OpCode

C Other
C Eval RV = DontAllow
C EndSl

* End of program
C Eval *inLR = *ON
C Return

*--
* opCode Subroutine

C opCode Begsr

* Lookup operation access in acounting code using the
* Operation ID as offset
C Select
* If all directory access, Allow operations 10
C When AcntCode(OpID+6) =
C %char((ApplicID + 1))
C or AcntCode(OpID+6) = AnyAll
C or ApplicID = FTPClientRqs
C and Acntcode(OpID+6) = CltAllSvrPub
C or ApplicID = FTPServerRqs
C and Acntcode(OpID+6) = CltPubSvrAll
C Eval RV = Allow
* If public directory operation, allow only if public directory 11
* or lib is used
C When AcntCode(OpID+6) =
C %char((ApplicID + 5))
C or AcntCode(OpID+6) = AnyPub
C or ApplicID = FTPServerRQS
C and Acntcode(OpID+6) = CltAllSvrPub
C or ApplicID = FTPClientRqs
C and Acntcode(OpID+6) = CltPubSvrAll

* Compare Public library and directory against constant 12
* use xlate subprocedure to translate directory to uppercase 6
C If PublicLib = %Subst(OpSpecInf : 1 : 11)
C or PublicDir =
C xlate(%Subst(OpSpecInf : 1 : 23) : 'UP')
C or OpID = InitSession
C or OpID = ExecuteCl
* (InitSession or ExecuteCL doesn't pass a
* directory or library in OpSpecInf)
C Eval RV = Allow
C Else
309

C Eval RV = DontAllow
C EndIf

* Operation not allowed
C Other
C Eval RV = DontAllow
C EndSl

C EndSr

*---
* xlate Subroutine 6

Pxlate B
* Procedure Interface definition
DXlate PI 100A
D InputString 100A Value
D Direction 1A Value
* Direction values : U = from lower to upper
* D = from upper to lower

* Stand Alone variables
D OutputString S 100A
D LW C 'abcdefghijklmnopqrstuvwxyz'
D UP C 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

* Translate Up or Down
C Select
C When Direction = 'UP'
C Lw:Up Xlate InputString OutputString
C When Direction = 'DN'
C Up:Lw Xlate InputString OutputString
C EndSl

* Return OutputString value
C Return OutputString
P E

FTPRQSEXIT program notes
1 As you can see, this program uses a procedure interface definition to define

the parameters passed by the exit point. Here is the prototype definition that
goes along with it:

* FTPRQSPROT from EXITSRC in RPGISCOOL
* Prototype for exit program FTPRQSEXIT
* using system registry format VLRQ0100
D FtpRqsExit PR EXTPGM('FTPRQSEXIT')
D ApplicID 10I 0 CONST
D OpID 10I 0 CONST
D UsrPrf 10A CONST
D RmtIPAddr 10A CONST
D RmtIPAddrL 10I 0 CONST
D OpSpecInf 999A CONST
D OpSpecInfL 10I 0 CONST
D RV 10I 0

6 The program uses a subprocedure to perform the translation of the directory
value from lower case to upper case. The main benefit of using a
subprocedure in this case is the use of the XLATE instruction, as a built-in
function in an expression. Here is the prototype used for the XLATE
procedure:

* XLATEPROT from EXITSRC in RPGISCOOL
* Prototype for xlate subprocedure
D Xlate PR 100A
D InputString 100A value
D Direction 1A value

8 The Retrieve User Information (QSYRUSRI) API is called by using a CALLP
instruction which requires a prototype:

* QSYRUSRIPR from EXITSRC in RPGISCOOL
* Prototype for Retrieve User Information (QSYRUSRI) API 3
D RtvUsrPrf PR EXTPGM('QSYRUSRI')
310 Who Knew You Could Do That with RPG IV?

D RcvVar 324A
D RcvVarL 10I 0 CONST
D FmtName 8A CONST
D UsrPrf 10A CONST
D QUSEC 16A

More information on this API can be found in the System API Reference
OS/400 Security APIs, SC41-5872, manual. The usage of this OPM requires
the definition of the error code structure definition QUSEC. This structure
definition is imported from the library QSYSINC (QRPGLESRC/QUSEC) from
the System Openness Include licensed program. For more information on
using OPM APIs, refer to the 5.2, “Data queue APIs” on page 136.

The accounting code is referred in the program by looking in the mapping
array definition AcntCode, which is a 15-element array of one character each.

9 The general access validation on the application ID is done by using the first
four positions in the accounting code. Each position represents a specific
application ID. The +1 offset is used as the first application ID number, which
is 0. "FTP Client Request" matches the first index position in the accounting
code array, which starts at 1.

10 The operation ID access validation is done by using the last 10 positions in the
accounting code, starting at index number 6. The operation ID, passed as a
parameter, is used as an offset to determine the exact location. Since the
basic access value of any operation ID match the application ID sequence
(value 1 to 4 against Application ID 0 to 3), we used the offset 1, plus the
application ID, to validate some access values possibilities for a specific
application and all access to directories or libraries.

11 The offset 5, plus the Application ID, is used to validate some access values
possibilities for specific applications and public directory or library access.
Please check program note 10 for more information.

5.8.3.2 Registering the exit program
As stated earlier, this program can be used against all exit points by using the
VLRQ0100 format. For example, to register the exit program to the FTP server
Validation Request exit point in the system registry, perform the following steps:

1. Type WRKREGINF on a command line, and press Enter. A list of exit points
appears, as shown in Figure 35.

If you want to recreate the previous example, you can use the following
commands. The /COPY members defined in the program notes 1, 3, and 6
need to exist in a source file prior to creating the module and program.

CRTRPGMOD MODULE(rpgiscool/ftprqsexit) SRCFILE(rpgiscool/exitsrc)
CRTPGM PGM(rpgiscool/ftprqsexit) MODULE(rpgiscool/ftprqsexit)

Please refer to the following section for an example on how to add the exit
program to the FTP server validation request exit point in the system registry,
or enter the following command:

ADDEXITPGM EXITPNT(QIBM_QTMF_SERVER_REQ) FORMAT(VLRQ0100) PGMNBR(1)
PGM(RPGISCOOL/FTPRQSEXIT)

Try it yourself
311

Figure 35. Work with Registration Information

2. Type 8 (Work with exit programs) next to the IBM_QTMF_SERVER_REQ Exit Point
Format VLRQ0100exit point as shown Figure 35, and press Enter. The Work with
Exit Programs display appears as shown in Figure 36.

Figure 36. Work with Exit Programs display

3. Type 1 and the name of the compiled program as shown in Figure 36. Press
Enter. The Add Exit Program (ADDEXITPGM) display appears, as shown in
the Figure 37 on page 313.

Work with Registration Information

Type options, press Enter.
5=Display exit point 8=Work with exit programs

Exit
Exit Point

Opt Point Format Registered Text
QIBM_QSY_RST_PROFILE RSTP0100 *YES Restore User Profile
QIBM_QTA_STOR_EX400 EX400200 *YES
QIBM_QTA_STOR_EX400 EX400300 *YES
QIBM_QTA_TAPE_TMS TMS00200 *YES
QIBM_QTF_TRANSFER TRAN0100 *YES Original File Transfer Functi
QIBM_QTG_DEVINIT INIT0100 *YES Telnet Device Initialization
QIBM_QTG_DEVTERM TERM0100 *YES Telnet Device Termination
QIBM_QTMF_CLIENT_REQ VLRQ0100 *YES FTP Client Request Validation

8 QIBM_QTMF_SERVER_REQ VLRQ0100 *YES FTP Server Request Validation
QIBM_QTMF_SVR_LOGON TCPL0100 *YES FTP Server Logon
QIBM_QTMF_SVR_LOGON TCPL0200 *YES FTP Server Logon

More...
Command
===>
F3=Exit F4=Prompt F9=Retrieve F12=Cancel

Work with Exit Programs

Exit point: QIBM_QTMF_SERVER_REQ Format: VLRQ0100

Type options, press Enter.
1=Add 4=Remove 5=Display 10=Replace

Exit
Program Exit

Opt Number Program Library
1 FTPRQSEXIT RPGISCOOL

(No exit programs found.)

Bottom
Command
===>
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
312 Who Knew You Could Do That with RPG IV?

Figure 37. Add Exit Programs display

4. Press Enter to process.

5.8.4 More information about user exit programs
Multiples articles and samples programs on using RPG IV as an exit program
register on an exit point of the system registry are available on the Internet. You
can also find a different FTP server validation request exit program and more
information on this subject on the AS/400 Information Center Web site at:
http://www.as400.ibm.com/infocenter

Once inside the Information Center, select TCP/IP and then Transferring files (FTP)
and FTP security controls.

Add Exit Program (ADDEXITPGM)

Type choices, press Enter.

Exit point > QIBM_QTMF_SERVER_REQ
Exit point format > VLRQ0100 Name
Program number > 1 1-2147483647, *LOW, *HIGH
Program > FTPRQSEXIT Name
Library > RPGISCOOL Name, *CURLIB

Threadsafe *UNKNOWN *UNKNOWN, *NO, *YES
Multithreaded job action *SYSVAL *SYSVAL, *RUN, *MSG, *NORUN
Text 'description' *BLANK

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
313

314 Who Knew You Could Do That with RPG IV?

Chapter 6. Database access with RPG IV

Probably one of the most powerful aspects of RPG IV on the AS/400 is its ability
to integrate with the database. In this chapter, we review and provide examples of
this tight integration between the language and database.

Over the years, a number of different ways to access databases on a wide variety
of systems has evolved. The AS/400 system is no different. We use RPG IV as
the common denominator as we explore the database access methods in the
following sections:

• “Embedded SQL” on page 330
• “Stored procedures” on page 339
• “Call Level Interface” on page 348
• “Trigger programs” on page 379
• “Commitment control” on page 384

But first, we address the need to externalize your input and output (I/O) to allow
your RPG IV applications to quickly adapt to new database requirements in 6.1,
“Externalizing input and output” on page 315. After that, we show you how to
replace the old RPG indicators with easy-to-read and built-in functions introduced
in V4R2 in 6.2, “Replacing indicators with built-in functions” on page 327.

6.1 Externalizing input and output

Just what do we mean by the term externalizing input/output (I/O)? Aren’t our
files externalized already? After all, we define them with DDS rather than use the
old RPG II approach of defining files in input and output specifications.

In this section, we explain externalizing I/O and try to show you some of the
benefits of taking this approach.

6.1.1 What we mean by externalizing
Externalizing means that all READ, CHAIN, and other database operations are
located in separate routines and programs that require I/O make requests to
these routines to perform the operation on their behalf. This section further
explains this topic.

6.1.1.1 Why externalize?
Why would you want to do this? Perhaps we can best answer that question by
posing one of our own examples.

Suppose that during discussions with your users, it becomes apparent to you that
business needs have changed. After studying the new requirements for a while,
you realize that you need to redesign the database to accommodate these
changes.

Would you:

• Modify your database and then locate all relevant I/O operations and modify
them as required?

• Decide that doing the right thing is just too much work, and just "hack" the
database one more time?
© Copyright IBM Corp. 2000 315

If you chose the second option, it may be because your knowledge of your
applications tells you that the database I/O is spread liberally throughout the
programs. This makes the impact of a database change difficult to estimate and
equally difficult to implement. Don't feel embarrassed if you pleaded "guilty". If
you are entirely honest, this is the answer that 90% or more of all AS/400 RPG
users would give.

Many of the applications that we use today have evolved from an original
System/36 base. Sometimes their history goes even further back in time to a
System/3 or System/34. Even applications designed for the System/38 (the
AS/400 system's older brother) were often forced to trade off design against
performance. If your application is relatively new, it was probably created by
duplicating portions of existing applications. Unfortunately the benefits of this
approach (mainly speed of development) tend to be offset by the disadvantages
(perpetuation of the same old problems). Of course it is easy to overlook the
disadvantages when we're "under the gun" to produce as quickly as possible, and
we can always re-do it later.

6.1.1.2 The benefits of externalizing
Externalizing I/O operations provides one way of helping to ensure that your
applications can adapt quickly and (relatively) painlessly to changing business
needs. Instead of coding a READ, CHAIN, etc. at each point in the program
where database access is required, you invoke a routine to perform the I/O for
you.

While many people have successfully implemented such schemes in RPG/400,
doing so requires that you make program calls to the I/O routines. By utilizing
RPG IV’s sub procedures, you can now provide this interface in a much more
natural "English-like" fashion. For example, a routine to read a record from the
Customer Master file may be called ReadCust and could be designed to either
read a record by key or simply return the next record in the sequence. It may look
something like this:

* Read by key
C Eval CustRecord = ReadCust(CustKey)
* Read next record
C Eval CustRecord = ReadCust

Alternatively, we may choose to use different names for the two functions, for
example, ReadCustKey and ReadNextCust. If you need background information
and details on the subprocedures, see Chapter 3, “Subprocedures” on page 31.

6.1.1.3 One step at a time
At first glance, it may seem that making these changes requires a lot of work. The
main point to remember is that you don't have to apply this technique to every
database at the same time. Start with one that has been subject to change in the
past and then work on others as time permits. One possible approach would be to
switch each database to the new method the time you need to make changes to
it.

6.1.2 Putting theory into practice: An example of externalizing I/O
In the following sections, we give you a brief, and admittedly highly simplified,
example of using subprocedures to externalize your I/O. Hopefully by the time we
316 Who Knew You Could Do That with RPG IV?

finish you can see just how beneficial it can be. You may even have a few ideas
about how you can apply the principles to your own applications.

The following sections lead you through this process:

• We explain the system in its initial state. For the purpose of our example, the
system consists of a single file and a single program. Needless to say, this is
only intended to be representative of the overall system.

• The next section takes you through the steps required to move the file I/O
operations into a separate subprocedure.

• The third section shows you how the changes in the underlying database
design can be accommodated with little or no impact to the rest of the system.

• Finally, we discuss other possible database changes and alternative methods
for passing the record data between the procedures.

6.1.3 Externalizing example: Overview
The following sections describe the database, display file, and initial program that
we will work with in this example.

6.1.3.1 The display file CUSTDISP
All of our programs in this section use the same display file. As you can see in
Figure 38, it is very simple. We want to focus your attention on the real substance
of the examples.

Figure 38. The CUSTDISP display file

To use the program, you simply enter a five character account number and the
program attempts to retrieve the corresponding business address record. If the
mailing address flag in the record indicates that there is a separate mailing
address, that record is also retrieved and displayed. If either record is missing, an
appropriate error message appears.

Note that the text Original Customer file that appears on the sample display is
supplied by the program. Each of the samples display a different value.

7/01/99 at 14:38:14 PARIS on AS25

Customer Display - Using Original Customer file

Customer: 12345

Business Address Mailing Address

Detail: Jon's Test Co. Jon's Test Co.
12345 Any Street P.O. Box 172

Station 'A'
Anytown Anytown
ON L5M1Q1 ON L5M1Q1

F3=Exit
Database access with RPG IV 317

Here is the source code for the file:

A* CUSTDISP from EXTIOSRC in RPGISCOOL
A DSPSIZ(24 80 *DS3)
A REF(PARIS/CUSTOMER CUSTDET)
A INDARA
A CF03(03)
A R DISPREC
A 1 2DATE
A EDTCDE(Y)
A 1 11'at'
A 1 14TIME
A 1 59USER
A 1 70'on'
A 1 73SYSNAME
A 4 16'Customer Display - Using'
A VERSION 30A O 4 41
A 6 5'Customer:'
A CUST# R B 6 16
A 8 16'Business Address'
A 8 48'Mailing Address'
A 10 5'Detail:'
A B_CUSNAME R O 10 16REFFLD(CUSNAME)
A B_ADDRESS1R O 11 16REFFLD(ADDRESS1)
A B_ADDRESS2R O 12 16REFFLD(ADDRESS2)
A B_CITY R O 13 16REFFLD(CITY)
A B_PROVINCER O 14 16REFFLD(PROVINCE)
A B_POSTCODER O 14 26REFFLD(POSTCODE)
A M_CUSNAME R O 10 48REFFLD(CUSNAME)
A M_ADDRESS1R O 11 48REFFLD(ADDRESS1)
A M_ADDRESS2R O 12 48REFFLD(ADDRESS2)
A M_CITY R O 13 48REFFLD(CITY)
A M_PROVINCER O 14 48REFFLD(PROVINCE)
A M_POSTCODER O 14 58REFFLD(POSTCODE)
A 16 5'F3=Exit'

6.1.3.2 The initial database design
Our initial database doesn't really deserve the term "design". It is a System/36
style flat file with multiple record types. Sound familiar?

The file contains two distinct record types: Business address records and Mailing
address records. The Business address records are indicated by a "B" in the field
ADDRFLAG. The Mailing address records are indicated by an "M" in the same
field.

There is a Business address record for each customer. Mailing address records
are optional. If one exists, its presence is indicated by the appearance of an "M"
in the MAILFLAG field of the corresponding Business address record.

This is the DDS for the file:

* File Name: CUSTOMER
* File Description: Customer Master File
*
*===
A UNIQUE
A R CUSTDET
A CUST# 5A TEXT('Customer #')
A ADDRFLAG 1A TEXT('M=Mail B=Business')
A MAILFLAG 1A TEXT('Separate Mail Addr')
A CUSNAME 30A TEXT('Customer Name')
A ADDRESS1 30A TEXT('Address 1')
A ADDRESS2 30A TEXT('Address 2')
A CITY 20A TEXT('City')
A PROVINCE 3A TEXT('Province')
A POSTCODE 6A TEXT('Postal Code')
A K CUST#
A K ADDRFLAG
318 Who Knew You Could Do That with RPG IV?

6.1.3.3 Program SHOWCUST
The initial program in this example is SHOWCUST. When you enter a Customer
number, it first retrieves the business address record. If the separate mailing
address flag AddrFlag in the record is set to "M", it sets up the appropriate key
value and attempt to retrieve the mailing address. It then displays the address
data. If the Customer is not found, or if the mailing address is missing, an
appropriate error message is displayed. For the sake of simplicity, error
messages simply appear in the appropriate address fields.

Here is the source. The comments relate to the numbered marks follow the
source.

* File SHOWCUST from EXTIOSRC in RPGISCOOL
FCustDisp CF E WorkStn IndDs(D_Indicators) 1

FCustomer IF E K Disk

D D_Indicators DS 1
* Response Indicators
D Exit 3 3N

* Constants used in the program
D NotFound C 'Error - Customer not found'
D MailAddrErr C 'Error - Mail address missing'
D SameAsBus C 'Use business address'
D Business C 'B'
D Mailing C 'M'
D Separate C 'M'

* External data structures used for database and display I/O 2
D CustAddr E DS ExtName(Customer)
D BusAddr E DS ExtName(Customer) Prefix(B_)
D MailAddr E DS ExtName(Customer) Prefix(M_)

C Eval Version = 'Original Customer file'

* Initial 'priming' read of display file
C ExFmt DispRec

C DoU Exit

* Set up key and search for Business address
* Note: Key list CustKey is defined at the end of the source
C Eval AddrFlag = Business
C CustKey Chain Customer

* If the record is found set up display data and retrieve
* Mailing address if MailFlag indicates that one is available
C If %Found(Customer)
C Eval BusAddr = CustAddr

C If MailFlag <> Separate
C Eval MailAddr = *Blanks
C Eval M_CusName = SameAsBus
C Else
* Set up key and retrieve mailing address record
C Eval AddrFlag = Mailing
C CustKey Chain Customer

C If %Found(Customer)
C Eval MailAddr = CustAddr
C Else
* Error - no mailing record found - display error text
C Eval MailAddr = *Blanks
C Eval M_CusName = MailAddrErr
C EndIf
C EndIf

C Else
* Requested Customer not found - display error text
C Eval BusAddr = *Blanks
C Eval MailAddr = *Blanks
C Eval B_CusName = NotFound
Database access with RPG IV 319

C EndIf
* Display results and accept next request
C ExFmt DispRec

C EndDo

C Eval *InLR = *On

C CustKey Klist
C KFld Cust#
C KFld AddrFlag

1 This example takes advantage of the Indicator Data Structure (INDDS) facility
added to RPG IV in V4R2. This allows the programmer to simply assign
names to response and conditioning indicators. The From/To notation method
has to be used to indicate which indicator is being defined. In our example,
display file indicator 03 is associated with the name Exit.

Notice that the DDS keyword INDARA had to be specified on the display
CUSTDISP to use this facility.

2 To simplify the moving of data from the file to the display screen, the Customer
file record is specified as an externally described data structure CustAddr.
Data structures are also defined for the Business address (BusAddr) and the
Mailing address (MailAddr) using the same external definition but using the
Prefix keyword to generate different field names. A quick check of the display
file shows you that these are the names used to display the data. This allows
the file to be read and all relevant fields to be populated by simply moving the
entire CustAddr DS to either BusAddr or MailAddr as appropriate.

6.1.4 Externalizing example: Separating database logic from display logic
In this section, we cover the steps involved with separating the database logic
from the display logic. This sets us up for the subsequent database changes and
also provides us with database I/O routines that could be used, for example, from
a Java client.

Create the display file from the source:

CRTDSPF FILE(RPGISCOOL/CUSTDISP) SRCFILE(RPGISCOOL/EXTIOSRC)
SRCMBR(CUSTDISP)

Create the customer physical file:

CRTDSPF FILE(RPGISCOOL/CUSTOMER) SRCFILE(RPGISCOOL/EXTIOSRC)
SRCMBR(CUSTOMER)

Here is a partial screen shot with a sample of the data used to populate the file:

CUST# ADDRFLAG MAILFLAG CUSNAME ADDRESS1
12345 B M Jon's Test Co. 12345 Any Street
12345 M Jon's Test Co. P.O. Box 172
23456 B MailSameAsBus Inc. 23456 The Street
34567 B M Mail Address Missing 34567 Lost Avenue

Create the program and the program call:

CRTPGM PGM(RPGISCOOL/SHOWCUST)
CALL RPGISCOOL/SHOWCUST

Try it yourself
320 Who Knew You Could Do That with RPG IV?

6.1.4.1 The new structure
We are going to create a new version of the main program SHOWCUST, to which
we will give the highly original name of SHOWCUST2. For the purposes of our
example, we decided to keep the display file I/O in this main program. It is so
simple that there would be nothing left if we were to externalize that portion of the
logic! However, in the real world, externalizing the display file I/O would also be a
very useful since it would allow us to replace the 5250 screen with a Java client
for example.

The database I/O functions will be moved to a new subprocedure GETCUST2. As
you will see later, once the separation has been made, it becomes far easier to
accommodate changes in the database design.

6.1.4.2 The GETCUST2 subprocedure
A brief study of this code reveals that the logic itself is almost unchanged from the
original code in SHOWCUST.

Here is the source for the sub procedure GetCust. The markers 1 through 4 are
defined immediately after this source code example.

* GETCUST2 from EXTIOSRC in RPGISCOOL
H NoMain

FCustomer IF E K Disk
* Copy in the prototype for the subprocedure GetCust
/Copy RPGisCool/ExtIOSrc,GetCustPr 1

* Constants used in the program
D MailAddrErr C 'Error - Mail Address Missing'
D SameAsBus C 'For Mail Use Business Address'
D Business C 'B'
D Mailing C 'M'
D Separate C 'M'
D Found C *On
D NotFound C *Off

* Data structure used when retrieving Customer records
D CustAddr E DS ExtName(Customer)

* Structures used to pass Business & Mailing address data to caller
D BusAddr E DS Export 4
D ExtName(Customer) Prefix(B_)

D MailAddr E DS Export 4
D ExtName(Customer) Prefix(M_)

* Beginning of subprocedure GetCust
P GetCust B Export 2
D PI N
D CustNum Like(Cust#)

* Set up key and search for Business address
C Eval AddrFlag = Business
C CustKey Chain Customer

* If the record is found set up data and retrieve
* Mailing address if MailFlag indicates that one is available
C If %Found(Customer)
C Eval BusAddr = CustAddr

C If MailFlag <> Separate
C Eval MailAddr = *Blanks
C Eval M_CusName = SameAsBus

C Else
* Set up key and retrieve mailing address record
C Eval AddrFlag = Mailing
C CustKey Chain Customer

C If %Found(Customer)
Database access with RPG IV 321

C Eval MailAddr = CustAddr
C Else
* Error - no mailing record found - set up error text
C Eval MailAddr = *Blanks
C Eval M_CusName = MailAddrErr

C EndIf
C EndIf
* We have retrieved at least the Business address so return found
C Return Found 3

C Else
* Requested Customer not found - set up error text and return
C Eval BusAddr = *Blanks
C Eval MailAddr = *Blanks
C Eval B_CusName = NotFound
C Return NotFound 3
C EndIf

C CustKey Klist
C KFld CustNum
C KFld AddrFlag

P GetCust E

1 First, we produced the prototype for the new subprocedure and added a /Copy
statement to bring that source member into the program.

2 Next, we added the procedure interface. If you read Chapter 3,
“Subprocedures” on page 31, this should all be familiar to you. If you jumped
straight into this chapter, you may want to consider going back and reading
this chapter now before continuing with this section since we do not describe
these features here.

3 Next, we added the Return op-code. In our example, we chose to return a
named indicator (data type N) to notify the caller of the success or failure of
the read operation.

4 Since the purpose of the subprocedure is to retrieve the Customer information
on behalf of its caller, we need to find some way to do this. There are a
number of different methods that we could have used, but we chose to use
ILE’s Import/Export capability. The data read from the file is "exported" so that
it can be "imported" by the main program. This allows the two procedures to
share the data without the need for it to be passed as parameters. Some
programmers do not like this approach, but in this limited context, it seems to
be quite the method to use. Later in the chapter, we’ll discuss alternative
methods that could have been used.

In our example, the Import/Export data structures use the definitions of the
underlying databases. This was done to simplify the example. In practice, you
may choose to develop a separate composite definition for the express purpose
of passing back the result set.

6.1.4.3 The main program SHOWCUST2
Program SHOWCUST2 is a modified version of the original SHOWCUST. Here is
the source for SHOWCUST2:

H DftActGrp(*No)

FCustDisp CF E WorkStn IndDs(D_Indicators)

/Copy GetCustPr 2

D D_Indicators DS

* Response Indicators
D Exit 3 3N
322 Who Knew You Could Do That with RPG IV?

* Constants used in the program
D NotFound C 'Error - Customer not found'

D BusAddr E DS Import 3
D ExtName(Customer) Prefix(B_)

D MailAddr E DS Import 3
D ExtName(Customer) Prefix(M_)

C Eval Version = 'External I/O - Version 1'

C ExFmt DispRec

C DoU Exit

* GetCust reurns an indicator which is on if no record was found
C If Not GetCust(Cust#) 1
C Eval B_CusName = NotFound
C EndIf

C ExFmt DispRec

C EndDo

C Eval *InLR = *On

1 The first modification made was to remove the file I/O logic and replace it with
an invocation of the GetCust sub procedure.

2 The next step was the addition of a /COPY statement to incorporate the
prototype for GetCust that we developed earlier.

3 To allow the program to access the data retrieved by GetCust, the Import
keyword was added to the definitions for the data structures BusAddr and
MailAddr. Now whenever GetCust places data into these structures, it is
"visible" to our program.

6.1.5 Externalizing example: Implementing changes
Let us imagine that we have decided that the time has come to perform additional
normalization on the database. We intend to separate the two types of records
(Business and Mailing) into their own individual databases (CUSTOMERB and
CUSTOMERM). The following sections describe the process of implementing
these changes.

To recreate this example on your system, you need to compile the
subprocedure and the main program using the following commands:

Note: You can create a service program from GETCUST2 and bind that to the
SHOWCUST2 module, but simply bind them together for the sake of simplicity.

CRTRPGMOD MODULE(RPGISCOOL/GETCUST2)
CRTRPGMOD MODULE(RPGISCOOL/SHOWCUST2)

CRTPGM PGM(RPGISCOOL/SHOWCUST2)
MODULE(RPGISCOOL/SHOWCUST2 RPGISCOOL/GETCUST2)

CALL RPGISCOOL/SHOWCUST2

Try it yourself
Database access with RPG IV 323

6.1.5.1 Database changes
For the sake of simplicity, the two new databases will retain the original field
names. RPG IV’s PREFIX keyword gives us all the power we need to simply
rename the fields at the program level. Each of the new files is keyed only on the
Customer number (CUST#).

As you can see in the following example, the source for the CUSTOMERB file is
almost identical to the original CUSTOMER file (see 6.1.3.2, “The initial database
design” on page 318) with the exception that the record format was renamed to
CUSTDETB.

* CUSTOMERB from EXTIOSRC in RPGISCOOL
*
* File Name: CUSTOMERB
* File Description: Customer Business Addresses
*
*===
A UNIQUE
A R CUSTDETB
A CUST# 5A TEXT('Customer #')
A MAILFLAG 1A TEXT('M = Mailing Address')
A CUSNAME 30A TEXT('Customer Name')
A ADDRESS1 30A TEXT('Address 1')
A ADDRESS2 30A TEXT('Address 2')
A CITY 20A TEXT('City')
A PROVINCE 3A TEXT('Province')
A POSTCODE 6A TEXT('Postal Code')
A K CUST#

The Mailing address file is similar but the "Separate mailing address" flag has
been removed and its record format changed to CUSTDETM. Here is the source:

* CUSTOMERM from EXTIOSRC in RPGISCOOL
*
* File Name: CUSTOMERM
* File Description: Customer Mailing Addresses
*
*==
A UNIQUE
A R CUSTDETM
A CUST# 5A TEXT('Customer #')
A CUSNAME 30A TEXT('Customer Name')
A ADDRESS1 30A TEXT('Address 1')
A ADDRESS2 30A TEXT('Address 2')
A CITY 20A TEXT('City')
A PROVINCE 3A TEXT('Province')
A POSTCODE 6A TEXT('Postal Code')
A K CUST#

Changes to GetCust
Source GETCUST3 contains a modified version of the original subprocedure
GetCust. It now retrieves the customer data by accessing the two separate
databases. Here’s the modified source. An explanation of the marked items
follows.

* File GETCUST3 from EXTIOSRC in RPGISCOOL

FCustomerB IF E K Disk Prefix(B_) 1
FCustomerM IF E K Disk Prefix(M_)

* Copy in the prototype for the GetCust subprocedure
/Copy RPGisCool/ExtIOSrc,GetCustPr

* Constants used in the program
D MailAddrErr C 'Error - Mail Address Missing'
D SameAsBus C 'For Mail Use Business Address'
D Business C 'B'
D Mailing C 'M'
D Separate C 'M'
D Found C *On
324 Who Knew You Could Do That with RPG IV?

D NotFound C *Off

* Structures used to pass Business & Mailing address data to caller
3

D BusAddr E DS Export
D ExtName(CustomerB) Prefix(B_)

D MailAddr E DS Export
D ExtName(CustomerM) Prefix(M_)

* Beginning of subprocedure GetCust
P GetCust B Export
D PI N
D CustNum Like(B_Cust#) 2

* Search for Business address
C CustNum Chain CustomerB 4

* If the record is found set up data and retrieve
* Mailing address if MailFlag indicates that one is available
C If %Found(CustomerB)

C If B_MailFlag <> Separate
C Eval MailAddr = *Blanks
C Eval M_CusName = SameAsBus

C Else
* Retrieve mailing address record
C CustNum Chain CustomerM 5

C If %Found(CustomerM)
C Else
* Error - no mailing record found - set up error text
C Eval MailAddr = *Blanks
C Eval M_CusName = MailAddrErr

C EndIf
C EndIf
* We have retrieved at least the Business address so return found
C Return Found

C Else
* Requested Customer not found - set up error text and return
C Eval BusAddr = *Blanks
C Eval MailAddr = *Blanks
C Eval B_CusName = NotFound
C Return NotFound
C EndIf

P GetCust E

1 The first change was to modify the F specs to remove the old customer file and
introduce the new Business and Mailing address files. We used the same
Prefix entry later for the data structures BusAddr and MailAddr so that the data
from each file is read directly into its associated structure 3.

2 Next we had to modify the definition of CustNum in the procedure interface
parameter list to reference the field B_Cust# since the field Cust# which it
referenced in GETCUST2 does not exist in this version.

Note: We were tempted to go back and use B_Cust# as the reference field in
GETCUST2 to avoid this change. That would have been cheating. Looking
back to solving your problem is always easier. You will undoubtedly encounter
similar "why didn’t I think of that" situations in your own efforts.

3 The names of the new files are used to supply the external descriptions and
the Prefix is used to match the field names to the files.

4 Next, we modified the CHAIN operation to use CustNum as the key since there
is no longer a need for a keylist. We also removed the key list and the EVAL
Database access with RPG IV 325

that set up the ADDRFLAG field. The customer records are now being read
directly into their data structures, so there is no need to move the data after
the read.

5 Similar changes were made to the code handling the read of the mailing
address.

6.1.5.2 Changes to SHOWCUST
The time has come to test our earlier claim that having externalized the I/O will
minimize the impact of the changes to the calling programs even though we only
have one calling program.

Here’s the proof. The only change required to produce SHOWCUST3 from the
previous version was that the external definitions for BusAddr and MailAddr were
changed to use the new database formats.

That is the total extent of the changes as you can see from the following
highlighted items:

D BusAddr E DS Import
D ExtName(CustomerB) Prefix(B_)

D MailAddr E DS Import
D ExtName(CustomerM) Prefix(M_)

6.1.6 Externalizing example: Other possibilities
Suppose that we were to decide that the database will be further normalized by
replacing the fields CITY and PROVINCE with a City code, which would reference
a separate City database. What would we have to do to achieve this?

We haven’t coded a solution to this particular problem, but have offered it as an
exercise for you. However, we will make one suggestion. When you create the
new Business address database, use a new name. Retain the existing definition
so that it can still be used to describe the Import/Export data structure BusAddr.
Handle the new Mailing address database the same way.

6.1.7 Summary
Hopefully by now we have convinced you that externalizing your I/O can
significantly reduce the effort required to implement design changes in your
database. It can also offer other, perhaps unexpected, benefits.

To recreate this example on your system, you need to compile the
subprocedure and the main program using the following commands:

CRTRPGMOD MODULE(RPGISCOOL/GETCUST3)
CRTRPGMOD MODULE(RPGISCOOL/SHOWCUST3)

CRTPGM PGM(RPGISCOOL/SHOWCUST3)
MODULE(RPGISCOOL/SHOWCUST3 RPGISCOOL/GETCUST3)

CALL RPGISCOOL/SHOWCUST3

Try it yourself
326 Who Knew You Could Do That with RPG IV?

For example, with our I/O operations spread throughout the code, we would
probably never add additional logic to our programs to determine if the record
being requested had already been read and locked by the previous request. If all
I/O for the file is in one place, such a change is trivial, this has the potential to
offer significant performance benefits, particularly in a batch environment.

6.2 Replacing indicators with built-in functions

RPG operations on database files, like CHAIN or READ, have always required
the use of resulting indicators to signal specific conditions that could arise on
such operations. Indicators were used to signal not found, end of file, or error
conditions.

Starting with V4R2 a group of built-in functions is available for testing such
conditions. You can completely avoid the use of resulting indicators in the file
operations. We recommend that you use these new functions since they provide
far more readable code than the cryptic use of numbered indicators. Refer to
Table 78 for a summary of all of the new built-ins.

Table 78. Built-in functions for file operations

6.2.1 %EOF(FileName)
%EOF returns *On if the most recent read operation or write to a subfile ended in
an end of file or beginning of a file condition. Otherwise, it returns *Off.

The file operations that set %EOF condition are:

• READ, READC, READE, READP, READPE
• WRITE to the subfile

The following code snippet illustrates the use of a %EOF built-in function:

C Read MyFile
C DoW Not %EOF(MyFile)
C* Some program logic
C Read MyFile
C EndDo

Compare this with the same code written in RPG/400:

C READ MYFILE 90
C *IN90 DOWEQ'0'
C* Some program logic
C READ MYFILE 90
C END

Function Parameter Parameter
required?

Result type

%EOF File name No Indicator

%EQUAL File name No Indicator

%ERROR None N/A Indicator

%FOUND File name No Indicator

%OPEN File name Yes Indicator

%STATUS File name No Unsigned integer(5,0)
Database access with RPG IV 327

6.2.2 %EQUAL(FileName)
%EQUAL returns *On if the most recent relevant operation found an exact match.
Otherwise, it returns *Off.

Currently SETLL and LOOKUP are the only operations that set the %EQUAL
condition.

The following code snippet illustrates the use of the %EQUAL built-in function:

C SearchKey SetLL MyFile
C If %EQUAL(MyFile)
C Read MyFile

6.2.3 %FOUND(FileName)
%FOUND returns *On if the most recent relevant file operation found a record, a
string operation found a match, or a search operation found an element.
Otherwise, this function returns *Off.

The operations that set the %FOUND condition are:

• File operations CHAIN, DELETE, SETGT, SETLL
• String operations SCAN, CHECK, CHECKR
• Table operation LOOKUP

The following code snippet illustrates the use of the %FOUND built-in function:

C SearchKey Chain MyFile
C If %FOUND(MyFile)
C* Some program logic
C EndIf

6.2.4 %OPEN(FileName)
%OPEN returns *On if the specified file is open. A file is considered "open" if it
has been opened by the RPG program during initialization or by an OPEN
operation, and has not subsequently been closed. If the file is conditioned by an
external indicator and the external indicator was off at program initialization, the
file is considered closed, and %OPEN returns *Off.

The following code snippet illustrates the use of the %OPEN built-in function:

FMyFile IF E Disk UsrOpn
C* If the file is not open, do it now
C If Not %OPEN(MyFile)
C Open MyFile
C EndIf

6.2.5 %ERROR
%ERROR returns *On if the most recent operation, specified with the extender
"E", resulted in an error condition. This is the same as the error indicator being
set on for the operation. Before an operation with the extender "E" specified
begins, %ERROR is set to return *Off and remains unchanged following the
operation if no error occurs. All operations that allow an error indicator can also
set the %ERROR built-in function. The CALLP operation can also set %ERROR.

Do not forget to specify error handling extender (E) on the file operations if you
want to use the %ERROR built-in function.
328 Who Knew You Could Do That with RPG IV?

6.2.6 %STATUS(FileName)
%STATUS returns the most recent value set for the program or file status. It is set
whenever the program status or any file status changes, usually when an error
occurs.

If %STATUS is used without the optional file name parameter, it returns the
program or file status most recently changed. If a file is specified, the value
contained in the *STATUS field of the INFDS data structure for the specified file is
returned. The INFDS data structure does not have to be specified for the file.

%STATUS starts with a return value of 00000 and is reset to 00000 before any
operation with an (E) extender specified begins.

The following code snippet illustrates the use of the %ERROR and %STATUS
built-in functions:

FMyFile IF E Disk UsrOpn
D ErrMsg1 S 20 Inz('Error - File opened')
D ErrMsg2 S 20 Inz('Error - File locked')
D ErrMsg3 S 20 Inz('Error - File closed')
D ErrMsg4 S 20 Inz('End of file reached')
D ErrMsg5 S 20 Inz('Unexpected error')
* Open the file and check for status code
C Open(E) MyFile
C Select
C When %Status(MyFile) = 1215
C ErrMsg1 Dsply
C When %Status(MyFile) = 1217
C ErrMsg2 Dsply
C EndSl
* Read the file and check for status code
C DoU %Eof(MyFile)
C Read(E) MyFileR
C Select
C When %Error
C If %Status(MyFile) = 1211
C ErrMsg3 Dsply
C Else
C ErrMsg5 Dsply
C EndIf
* Check for the end of file
C When %Eof(MyFile)
C Errmsg4 Dsply
C Other
* Some program logic
C EndSl
C EndDo

6.2.7 Indicator data structure
The INDDS keyword lets you associate a data structure name with the INDARA
indicators for a workstation or printer file. This data structure contains the
conditioning and response indicators passed to and from data management for
the file, and is called an indicator data structure.

When using an indicator data structure, you must follow these rules:

• This keyword is allowed only for externally described PRINTER files and
externally and program-described WORKSTN files.

• File must be defined using the DDS keyword INDARA.

• The data structure name must be defined as a data structure on the D
specifications and can be a multiple-occurrence data structure.

• The length of the indicator data structure is always 99.
Database access with RPG IV 329

• The indicator data structure is initialized by default to all zeros (0).

• The same data structure name may be associated with more than one file.

The following code snippet illustrates the use of the indicator data structure in
conjunction with file indicators as well as program internal indicators:

FDispFile CF E WorkStn IndDS(DispInd)
*
D DispInd DS
* Response indicators
D Exit 3 3N
D Cancel 12 12N
* Conditioning indicators
D DateError 30 30N
D StrDatError 31 31N
D EndDatError 32 32N
* Date validity checking
C Eval StrDatError = StartDate < Today
C Eval EndDatError = EndDate < StartDate
C Eval DateError = StrDatError Or EndDatError
C Exfmt MyScreen
* Exit the program
C If Exit Or Cancel

6.3 Embedded SQL

Instead of using AS/400 native database file operations, like READ, CHAIN,
UPDATE, and DELETE, we can embed SQL statements in our RPG IV program
and use them to process records in AS/400 database files. SQL is the industry
standard for database access and control, and is used by customers on different
platforms. The reasons for using embedded SQL in RPG IV programs on the
AS/400 system could be:

• Customers with SQL knowledge can write RPG programs without learning
native file operations.

• SQL is a more natural language and such code is easier to read and maintain.

• SQL can simplify the program logic when multiple records are included in an
operation, such as UPDATE or DELETE. See 6.3.4, “Using a cursor” on page
333.

• SQL operations are performed by a query optimizer, which is enhanced with
each new release, and automatically takes advantages of new database
technologies.

• Applications migration from or to the AS/400 system is easier if the
applications are written using standard language like SQL.

Source code that contains embedded SQL statement must be first processed by
an SQL preprocessor. Its job is to replace SQL statements with calls to
corresponding SQL function programs. This preprocessor is a part of the IBM
licensed product DB2 Query Manager and SQL Development Kit for AS/400
(5769-ST1), which must be available during the application development. The
runtime support is included in the operating system.

The request for additional chargeable software could be a reason for not using an
embedded SQL. In that case, you can try to use Call Level Interface APIs,
described later in 6.5, “Call Level Interface” on page 348. These system APIs
allow the use of SQL statements in RPG IV program, without needing a SQL
preprocessor.
330 Who Knew You Could Do That with RPG IV?

6.3.1 Rules for embedding SQL statements
Use the following rules when writing an RPG IV program with embedded SQL
statements:

• Enter your SQL statements on the C specification.

• Start your SQL statements using the delimiter /EXEC SQL in positions 7
through 15, with the "/" (slash) in position 7.

• You can start entering your SQL statements on the same line as the starting
delimiter or on the new line.

• Use the continuation line delimiter, a "+" (plus sign) in position 7, to continue
your statements on any subsequent lines.

• Use the ending delimiter /END-EXEC in positions 7 through 15, with the "/"
(slash) in position 7, to signal the end of your SQL statements.

Here is an example of an embedded SQL UPDATE statement:

C/Exec Sql
C+ Update Parts
C+ Set PartDes = :DspDes,
C+ PartQty = :DspQty,
C+ PartPrc = :DspPrc,
C+ PartDat = :DspDat
C+ Where PartNum = :DspNum
C/End-Exec

The source member containing the RPG IV program with embedded SQL
statements must be of type SQLRPGLE. This denotes to PDM options 14 or 15 to
execute the CL command CRTSQLRPGI, which is required to call the SQL
preprocessor.

6.3.2 SQL preprocessor
The SQL preprocessor creates an output source file member. By default, it
creates a temporary source file called QSQLTEMP1 in the library QTEMP, which
is automatically deleted by the system at the end of the job. You can specify the
output source file as a permanent file name on the preprocessor command. A
member with the same name as the program name is added to the output source
file.

This member contains the following items:

• Calls to the SQL runtime support, which have replaced embedded SQL
statements

• Parsed and syntax-checked SQL statements

By default, the precompiler calls the host language compiler by using either the
Create Bound RPG Program (CRTBNDRPG) or Create RPG Module
(CRTRPGMOD) command, depending on the PDM option 14 (Compile) or 15
(Create module).

6.3.3 Error and exception handling
SQL does not communicate directly with the end user, but rather returns error
codes to the application program when an error or exception occurs. These error
codes can be used in two ways:
Database access with RPG IV 331

• Checking return codes in an SQL Communication Area
• Defining global error handling by a WHENEVER statement

6.3.3.1 SQL Communication Area
The SQL preprocessor automatically includes the SQLCA (SQL Communication
Area) in the D specifications of the RPG IV program prior to the first C
specification. Therefore, it is not necessary to code INCLUDE SQLCA in the
source program.

The SQLCA, included in ILE RPG program, contains the following fields:

D* SQL Communications area
D SQLCA DS
D SQLAID 1 8A INZ(X'0000000000000000')
D SQLABC 9 12B 0
D SQLCOD 13 16B 0
D SQLERL 17 18B 0
D SQLERM 19 88A
D SQLERP 89 96A
D SQLERRD 97 120B 0 DIM(6)
D SQLERR 97 120A
D SQLER1 97 100B 0
D SQLER2 101 104B 0
D SQLER3 105 108B 0
D SQLER4 109 112B 0
D SQLER5 113 116B 0
D SQLER6 117 120B 0
D SQLWRN 121 131A
D SQLWN0 121 121A
D SQLWN1 122 122A
D SQLWN2 123 123A
D SQLWN3 124 124A
D SQLWN4 125 125A
D SQLWN5 126 126A
D SQLWN6 127 127A
D SQLWN7 128 128A
D SQLWN8 129 129A
D SQLWN9 130 130A
D SQLWNA 131 131A
D SQLSTT 132 136A
D* End of SQLCA

The SQLCOD and SQLSTT values are set by the database manager after each
SQL statement is executed. A program should check either the SQLCOD or
SQLSTT value to determine whether the last SQL statement was successful:

• If the SQL encounters an error while processing the statement, the SQLCOD
is a negative number, and the first two characters of the SQLSTT are not "00",
"01", or "02".

• If SQL encounters a warning but a valid condition while processing your
statement, the SQLCOD is a positive number and the first two characters of
the SQLSTT are "01".

• If your SQL statement is processed without encountering an error or warning
condition, the SQLCOD returned is 0 and SQLSTT is '00000'.

The commonly used condition "No record found" returns the value SQLCOD =
+100 or SQLSTT = ’02000’.

The Communication area contains a lot of other fields with specific information
relating to the executed SQL statement.

6.3.3.2 The WHENEVER statement
As an alternative to checking the SQLCOD or SQLSTT values, a programmer can
use the SQL statement WHENEVER.
332 Who Knew You Could Do That with RPG IV?

The WHENEVER statement causes SQL to check SQLSTT and SQLCOD and
continue processing your program or branch to another area in your program if an
error, exception, or warning exists as a result of running an SQL statement. An
exception condition handling subroutine, written by a programmer, can then
examine the SQLCOD or SQLSTT field to take an action specific to the error or
exception situation.

The WHENEVER statement looks like this:

C/Exec Sql
C+ WhenEver Condition Action
C/End-Exec

There are three conditions you can specify:

SQLWARNING SQLCOD contains a positive value other than 100
SQLERROR SQLCOD contains a negative value (error condition)
NOT FOUND SQLCOD = +100 or SQLSTT = ’02000’ (no record found)

You can also specify the action you want for a specific condition:

CONTINUE Program continues to the next statement.
GO TO label Program branches to a label (TAG) in the program.

6.3.4 Using a cursor
Opposite to native database operations, which are single record oriented and
able to process only one record at the time, SQL statements are multiple-record
oriented and can handle a group of records all at once. For example, with one
DELETE statement, you can delete all item records for one order. Or, with one
UPDATE statement, you can update all records in the file if WHERE condition is
not used. To achieve the same results with native file operations, you need to
write program loops and test different conditions. Therefore, using SQL
statements can sometimes simplify the program logic.

According to this behavior, a SELECT statement puts all selected records in the
result table. Usually, a program has to transfer all these records from SQL result
table to a subfile so the end user can see them. To access a result table, SQL
provides technique called cursor. It is used within an SQL program to maintain a
position in the result table. SQL uses a cursor to work with the rows in the result
table and to make them available to the program. A program can have several
cursors, although each must have a unique name.

Statements related to using a cursor include:

• DECLARE CURSOR statement defines the name of the cursor and specifies
the rows to be retrieved with the embedded SELECT statement.

• OPEN statement opens the cursor for use within the program. The cursor
must be opened before any rows can be retrieved.

• FETCH statement retrieves rows from the cursor's result table or positions the
cursor on another row.

• CLOSE statement closes the cursor.

The following code snippets illustrates the use of cursor:

C/Exec Sql
C+ Declare C1 Cursor For
C+ Select * From Parts
Database access with RPG IV 333

C+ Order by PartNum
C+ For Fetch Only
C/End-Exec

C/Exec Sql
C+ Open C1
C/End-Exec

C/Exec Sql
C+ Fetch C1 Into :SflStr
C/End-Exec

C/Exec Sql
C+ Close C1
C/End-Exec

SQL supports two types of cursors: serial and scrollable. The type of cursor
determines the positioning methods that can be used with the cursor.

6.3.4.1 Serial cursor
A serial cursor is defined by default, if the keyword SCROLL is not used. With a
serial cursor, each row of the result table can be fetched only once per OPEN of
the cursor. When the cursor is opened, it is positioned before the first row in the
result table. With each FETCH statement, the cursor is moved to the next row in
the result table, which becomes the current row. If host variables are specified
(with the INTO clause on the FETCH statement), SQL moves the current row's
contents into your program's host variables.

This sequence is repeated each time a FETCH statement is issued until the
end-of-data (SQLCOD = 100) is reached. When you reach the end-of-data, close
the cursor. You cannot access any rows in the result table after you reach the
end-of-data. To use the cursor again, you must first close the cursor and then
re-issue the OPEN statement.

6.3.4.2 Scrollable cursor
With a scrollable cursor, the rows of the result table can be fetched many times.
The cursor is moved through the result table based on the position option
specified on the FETCH statement. When the cursor is opened, it is positioned
before the first row in the result table. With a FETCH statement, the cursor is
positioned to the row in the result table that is specified by the position option.
That row becomes the current row.

The following scroll options, relative to the current cursor location in the result
table, are used to position the cursor when issuing a FETCH statement:

NEXT Positions the cursor on the next row. Default if no position specified.
PRIOR Positions the cursor on the previous row.
FIRST Positions the cursor on the first row.
LAST Positions the cursor on the last row.
BEFORE Positions the cursor before the first row.
AFTER Positions the cursor after the last row.
CURRENT Does not change the cursor position.
RELATIVE n Positions the cursor for n rows relative to the current position.

6.3.5 An embedded SQL program example
To illustrate the coding of embedded SQL statements in RPG IV program, we use
a simple example of file maintenance program, where we can implement different
SQL statements (SELECT, INSERT, UPDATE and DELETE).
334 Who Knew You Could Do That with RPG IV?

The program uses the display file DSPFIL1 as an interface with a terminal user
and handles records in the database file PARTS. To help you understand the
logic of a program, we provide you the DDS definitions for both the database and
display file.

The database file PARTS contains five fields, one of them is used as a key:

A**
A* Physical file PARTS IN FILE DBSRC IN LIB RPGISCOOL
A**
A UNIQUE
A R PARTR
A PARTNUM 5S 0 COLHDG('Part Number')
A PARTDES 25 COLHDG('Part Description')
A PARTQTY 5P 0 COLHDG('Part Quantity')
A PARTPRC 6P 2 COLHDG('Part Price')
A PARTDAT L COLHDG('Shipment Date')
A DATFMT(*ISO)
A K PARTNUM

The display file DSPFIL1 contains two records and a subfile:

A**
A* Display file DSPFIL1 IN FILE DBSRC IN LIB RPGISCOOL
A**
A INDARA
A CA03(03 'Exit')
A CA12(12 'Cancel')
A R DSPREC1
A CA04(04 'List All')
A CF05(05 'Insert')
A 2 2'Enter part number:'
A PARTNO 5Y 0I +1
A 55 4 2'Invalid part number'
A 24 2'F3 = Exit F4 = List all'
A +2'F5 = Insert F6 = Update'
A +2'F7 = Delete F12 = Cancel'
A R DSPREC2 OVERLAY
A CLRL(*NO)
A CF06(06 'Update')
A CA07(07 'Delete')
A DSPNUM 5 0 2 21
A 4 2'Part description..'
A DSPDES 25 B +1
A 5 2'Part quantity.....'
A DSPQTY 5 0B +1EDTCDE(1)
A 6 2'Part price........'
A DSPPRC 6 2B +1EDTCDE(1)
A 7 2'Shipment date.....'
A DSPDAT L B +1
A R SFLREC1 SFL
A DSPNUM 5 0 5 2
A DSPDES 25 +2
A DSPQTY 5 0 +2EDTCDE(1)
A DSPPRC 6 2 +2EDTCDE(1)
A DSPDAT L +2
A R SFLREC2 OVERLAY
A SFLCTL(SFLREC1)
A SFLSIZ(50)
A SFLPAG(10)
A SFLDSP
A SFLDSPCTL
A 66 SFLCLR
A 4 1'Number Description'
A +16'Quantity Price'
A +2'Shipment date'

The keyword INDARA defined at the file level allows us to create an indicator
data structure in the program and to avoid the use of numeric indicators.

The subfile is used to display all records from Parts file and is populated using the
FETCH statement.
Database access with RPG IV 335

Based on the function key that is pressed, different SQL statements in the
program are executed.

6.3.6 Source code for SQLEMBED program
Now we can analyze our RPG IV program with embedded SQL statements:

**
* Filename SQLEMBED from DBSRC in RPGISCOOL
* Simple ILE RPG program SQLEMBED to test embedded SQL
*
* Examples of SELECT, INSERT, UPDATE, DELETE and FETCH
*
* Compile this source member as program SQLEMBED (PDM Option=14)
* or use command CRTSQLRPGI with COMMIT(*NONE)
**
* Display file with subfile
FDspFil1 CF E WorkStn IndDS(DispInd) 1
F SFile(SflRec1:RecNum)
*--
D RecNum S 3 0
*
* Indicator data structure for display file indicators
*
D DispInd DS 2
D Exit 3 3N
D ListAllRec 4 4N
D InsertRec 5 5N
D UpdateRec 6 6N
D DeleteRec 7 7N
D Cancel 12 12N
D InvalidRec 55 55N
D ClearSfl 66 66N
*
* Host structure to simplify host variables in SQL statement
*
D HostStr DS 3
D DspNum 5 0
D DspDes 25
D DspQty 5 0
D DspPrc 6 2
D DspDat D
*--
C Exfmt DspRec1
* Loop begin
C DoW Not (Exit Or Cancel)
C Eval InvalidRec = *Off
C Select
*
* Insert new record into file Parts
*
C When InsertRec
C Clear HostStr
C Eval DspNum = PartNo
C Exfmt DspRec2
*
C/Exec Sql
C+ Insert Into Parts 4
C+ Values (:HostStr)
C/End-Exec
*
C If SqlStt = '23505'
C Eval InvalidRec = *On
C Endif
*
* List all records from file Parts using subfile
*
C When ListAllRec
C Eval RecNum = 0
C Eval ClearSfl = *On
C Write SflRec2
C Eval ClearSfl = *Off
*
C/Exec Sql
C+ Declare C1 Cursor For 8
C+ Select * From Parts
336 Who Knew You Could Do That with RPG IV?

C+ Order by PartNum
C+ For Fetch Only
C/End-Exec
*
C/Exec Sql
C+ Open C1 9
C/End-Exec
*
C/Exec Sql
C+ Fetch C1 Into :HostStr 10
C/End-Exec
*
C DoW SqlStt <> '02000'
C Eval RecNum = RecNum + 1
C Write SflRec1
*
C/Exec Sql
C+ Fetch C1 Into :HostStr 10
C/End-Exec
*
C EndDo
*
C/Exec Sql
C+ Close C1 11
C/End-Exec
*
C Exfmt SflRec2
*
* Display selected record from file Parts
*
C Other
*
C/Exec Sql
C+ Select * Into :HostStr 7
C+ From Parts
C+ Where PartNum = :PartNo
C/End-Exec
*
C If SqlStt = '02000'
C Eval InvalidRec = *On
C Else
C Exfmt DspRec2
C Select
C When Exit Or Cancel
C Leave
*
* Update selected record in file Parts
*
C When UpdateRec
*
C/Exec Sql
C+ Update Parts 5
C+ Set PartDes = :DspDes,
C+ PartQty = :DspQty,
C+ PartPrc = :DspPrc,
C+ PartDat = :DspDat
C+ Where PartNum = :DspNum
C/End-Exec
*
* Delet selected record from file Parts
*
C When DeleteRec
*
C/Exec Sql
C+ Delete From Parts 6
C+ Where PartNum = :DspNum
C/End-Exec
*
C EndSl
C EndIf
C EndSl
C Exfmt DspRec1
C EndDo
* Loop end
C Eval *INLR = *On
Database access with RPG IV 337

SQLEMBED program notes
1 On the F specifications, only the display file must be defined. The database

file PARTS is accessed through SQL statements and is not defined in the
program.

2 On the D specifications, we use the indicator data structure DISPIND, where
all display file response and conditioning indicators are defined with
meaningful names. This improves the readability of our program.

3 Program variables used in SQL statements are called host variables and must
be preceded by a ":" (colon). To simplify the writing of SQL statements, we
recommend that you define the data structure on D specifications, which
contains all host variables needed by the SQL statement. Such data structure
is known as a host structure and can be also externally defined.

4 For adding a new record into the file, the program uses the INSERT statement
with field values taken from the host structure. After inserting, we have to
check SQLSTT for value "23505", which signals that the record with this key
already exists in the file.

5 A record update is performed with the statement UPDATE. The record was
previously read, and there is no need to check the return code.

6 A record delete is performed with statement DELETE. The record was
previously read, and there is no need to check the return code.

7 To read a single record from file PARTS, the program has a SELECT
statement with an INTO clause to place all data into the host structure. The
record is identified by a WHERE clause. By checking that SQLSTT equals the
value ’02000’, we can identify that the no record found an exception.

8 To read all records from the file and put them into subfile, we have to use the
cursor technique. The cursor should be first declared and related to the
corresponding SELECT statement.

9 The OPEN statement actually performs a declared request and prepares the
result table.

10 The FETCH statement, performed in the loop, reads all rows from the result
table until the end of file condition (SQLSTT=’02000’) is reached. To keep this
program simple, we didn’t specify any validation of the %EOF (end of file)
condition for the subfile, which could be done at this point to prevent the
program from failing with a message indicating that the subfile reached its
maximum capacity.

11 The CLOSE statement should be performed at the end of FETCH loop to close
the cursor and prepare it for its next use.
338 Who Knew You Could Do That with RPG IV?

6.4 Stored procedures

Stored procedure support is a function of DB2 SQL for AS/400. It provides a way
for an SQL application to define and then invoke a procedure through SQL
statements. Stored procedures can be used in both distributed (client/server) and
non-distributed DB2 SQL for AS/400 applications.

One of the big advantages in using stored procedures is that for distributed
applications, the execution of one CALL statement on the application requester or
client, can perform any amount of work on the application server. This can
significantly reduce the data transfer between the client and server and
consequently improve the performance of the distributed application.

You may define a stored procedures in two ways:

• External procedure

An external procedure can be any supported high-level language program
(including ILE RPG) or a REXX procedure. The procedure does not need to
contain SQL statements, but it may contain SQL statements.

• SQL procedure

An SQL procedure is defined entirely in SQL and can contain SQL statements
that include SQL control statements.

You must understand the following concepts when creating and calling stored
procedures:

• Stored procedure definition through the CREATE PROCEDURE statement
• Stored procedure invocation through the CALL statement
• Parameter passing conventions
• Methods for returning a completion status to the program invoking the

procedure

Create the display file from the source:

CRTDSPF FILE(RPGISCOOL/DSPFIL1) SRCFILE(RPGISCOOL/DBSRC) SRCMBR(DSPFIL1)

Create the customer physical file:

CRTPF FILE(RPGISCOOL/PARTS) SRCFILE(RPGISCOOL/DBSRC) SRCMBR(PARTS)

Here is a sample of the data used to populate the file:

Part Number Part Description Part Quantity Part Price Shipment Date
12,345 Hammer 123 29.99 1999-05-01
23,456 Saw 234 20.99 1999-04-01
34,567 Hatchet 345 19.99 1999-03-01
45,678 Rasp 456 9.99 1999-02-01

Create the program and the program call:

CRTSQLRPGI OBJ(RPGISCOOL/SQLEMBED) SRCFILE(RPGISCOOL/DBSRC) COMMIT(*NONE)
CALL PGM(SQLEMBED)

Try it yourself
Database access with RPG IV 339

6.4.1 Creating an external procedure
To create an external procedure, we use SQL statement CREATE PROCEDURE,
which defines following terms:

• Procedure name
• Parameters and their attributes
• Other information about the procedure that the system uses when it calls the

procedure

Consider the following example:

CREATE PROCEDURE mylib/procname
(IN PARTNUM CHAR(6), INOUT PARTDES CHAR(25))
LANGUAGE RPGLE
MODIFIES SQL DATA
EXTERNAL NAME mylib/progname

This CREATE PROCEDURE statement performs the following functions:

• Names the procedure and library where the procedure is stored.

• Defines two parameters as character fields. The first is input only, and the
second is used for input and output.

Parameters can be defined as type IN, OUT, or INOUT. The parameter type
determines when the values for the parameters get passed to and from the
procedure.

• Indicates that the procedure is written in RPGLE. The language is important
since it impacts the types of parameters that can be passed.

• Indicates the procedure is an external program that modifies SQL data.

• Names the program that is called when the procedure is invoked on a CALL
statement.

6.4.2 Creating an SQL procedure
To create an SQL procedure, we use the same SQL statement CREATE
PROCEDURE, which defines:

• Procedure name

• Parameters and their attributes

• Other information about the procedure that the system uses when it calls the
procedure

• Procedure body

The procedure body is the executable part of the procedure and is a single SQL
statement. If multiple SQL statements are required to accomplish the procedure
logic, SQL control statements can be used to control the execution of procedure.
SQL control statements consist of:

• Assignment statement
• CALL statement
• CASE statement
• Compound statement
• FOR statement
• IF statement
• LOOP statement
340 Who Knew You Could Do That with RPG IV?

• REPEAT statement
• WHILE statement

The following example uses as input the employee number and a rating value.
The procedure uses a CASE statement based on a rating value to determine the
appropriate increase and bonus for the update:

EXEC SQL CREATE PROCEDURE UPDATE_SALARY
(IN EMPLOYEE_NUMBER CHAR(6),
IN RATING INT)
LANGUAGE SQL MODIFIES SQL DATA
CASE RATING
WHEN 1
UPDATE mylib/EMPLOYEE
SET SALARY = SALARY * 1.10,
BONUS = 1000
WHERE EMPNO = EMPLOYEE_NUMBER;

WHEN 2
UPDATE mylib/EMPLOYEE
SET SALARY = SALARY * 1.05,
BONUS = 500
WHERE EMPNO = EMPLOYEE_NUMBER;

ELSE
UPDATE mylib/EMPLOYEE
SET SALARY = SALARY * 1.03
BONUS = 0
WHERE EMPNO = EMPLOYEE_NUMBER;

END CASE;

This CREATE PROCEDURE statement performs the following tasks:

• Names the procedure UPDATE_SALARY.

• Defines the parameter EMPLOYEE_NUMBER as the input parameter with the
character data type of length 6 and a parameter RATING as an input
parameter with integer data type.

• Indicates that the procedure is an SQL procedure that modifies SQL data.

• Defines the procedure body. When the procedure is called, the input
parameter RATING is checked and the appropriate update statement is
executed.

6.4.3 Invoking a stored procedure and returning the completion status
To invoke a stored procedure we use the SQL CALL statement. This statement
contains the name of the stored procedure and any arguments passed to it.
Arguments may be constants, special registers, or host variables. Here is an
example of how to call a stored procedure and pass two arguments:

/Exec Sql
CALL mylib/procname (:PARTNUM, :PARTDES)
/End-Exec

The easiest way to return a completion status to the SQL programs issuing the
CALL statement is to code an extra INOUT type parameter and set it prior to
returning from the procedure.

Another, more complicated method of returning a completion status is to send an
escape message to the calling program (operating system program QSQCALL),
which invokes the procedure.
Database access with RPG IV 341

6.4.4 A stored procedure example
To illustrate the use of stored procedure we modified the example that we used in
6.3.6, “Source code for SQLEMBED program” on page 336. Embedded SQL
statements are replaced with SQL CALL statements to call stored procedures.
We created three stored procedures to show you different techniques for their
creation:

SPRCSEL RPG IV program PROGSEL with embedded SQL statements
SPRCUPD RPG IV program PROGUPD with native file operations

(without embedded SQL)
SPRCDEL SQL procedure

All these stored procedures are called from the program SPRCRUN.

6.4.4.1 Source code for program SPRCRUN
The logic of the program SPRCRUN is the same as of the program SQLEMBED
in 6.3.6, “Source code for SQLEMBED program” on page 336. It uses the display
file DSPFIL1 to communicate with the end user.

**
* Filename SPRCRUN from DBSRC in RPGISCOOL
* Simple ILE RPG program SPRCRUN to test stored procedures
*
* Program calls stored procedures SPRCSEL, SPRCUPD and SPRCDEL
*
* Compile this source member as program SPRCRUN (PDM Option=14)
* or use command CRTSQLRPGI with COMMIT(*NONE) and DATFMT(*ISO)
**
* Display file with subfile
FDspFil1 CF E WorkStn IndDS(DispInd) 1
F SFile(SflRec1:RecNum)
*--
D RecNum S 3 0
* Indicator data structure for display file indicators
*
D DispInd DS 2
D Exit 3 3N
D ListAllRec 4 4N
D InsertRec 5 5N
D UpdateRec 6 6N
D DeleteRec 7 7N
D Cancel 12 12N
D InvalidRec 55 55N
D ClearSfl 66 66N
* Action parameter and its meaning
*
D Action S 1 3
D SingleRec C CONST('S')
D FirstRec C CONST('F')
D NextRec C CONST('N')
D EndOfFile C CONST('E')
D UpdRecord C CONST('U')
D AddRecord C CONST('I')
D Error C CONST('X')
*--
* Stored Procedures SPrcSel written with embedded SQL
*
C/Exec Sql
C+ Create Procedure RpgIsCool/SPrcSel 4
C+ (InOut Action Char(1), InOut PartNum Numeric(5 , 0),
C+ Out PartDes Char(25), Out PartQty Numeric(5 , 0),
C+ Out PartPrc Numeric(6 , 2), Out PartDat Date)
C+ Language RPGLE
C+ Modifies SQL Data
C+ External Name RpgIsCool/ProgSel
C/End-Exec * Stored Procedures SPrcUpd written with native file operations
*
C/Exec Sql
C+ Create Procedure RpgIsCool/SPrcUpd 5
C+ (InOut Action Char(1), In PartNum Numeric(5 , 0),
C+ In PartDes Char(25), In PartQty Numeric(5 , 0),
342 Who Knew You Could Do That with RPG IV?

C+ In PartPrc Numeric(6 , 2), In PartDat Date)
C+ Language RPGLE
C+ Modifies SQL Data
C+ External Name RpgIsCool/ProgUpd
C/End-Exec
* Stored Procedures SPrcDel written in SQL
*
C/Exec Sql
C+ Create Procedure RpgIsCool/SPrcDel 6
C+ (In PartNo Numeric(5 , 0))
C+ Language SQL
C+ Modifies SQL Data
C+ Delete From Parts Where PartNum = PartNo
C/End-Exec
*
C Exfmt DspRec1
* Loop begin
C DoW Not (Exit Or Cancel)
C Eval InvalidRec = *Off
C Select
*
* Insert new record into file Parts
*
C When InsertRec
C Clear DspDes
C Clear DspQty
C Clear DspPrc
C Clear DspDat
C Eval DspNum = PartNo
C Exfmt DspRec2
C Eval Action = AddRecord
*
C/Exec Sql
C+ Call SPrcUpd 7
C+ (:Action, :PartNo, :DspDes, :DspQty, :DspPrc, :DspDat)
C/End-Exec
*
C If Action = Error
C Eval InvalidRec = *On
C Endif
*
* List all records from file Parts using subfile
*
C When ListAllRec
C Eval RecNum = 0
C Eval ClearSfl = *On
C Write SflRec2
C Eval ClearSfl = *Off
C Eval Action = FirstRec
*
C/Exec Sql
C+ Call SPrcSel 11
C+ (:Action, :DspNum, :DspDes, :DspQty, :DspPrc, :DspDat)
C/End-Exec
*
C DoW Action <> EndOfFile
C Eval RecNum = RecNum + 1
C Write SflRec1
C Eval Action = NextRec
*
C/Exec Sql
C+ Call SPrcSel 12
C+ (:Action, :DspNum, :DspDes, :DspQty, :DspPrc, :DspDat)
C/End-Exec
*
C EndDo
C Exfmt SflRec2
*
* Display selected record from file Parts
*
C Other
C Eval Action = SingleRec
C Eval DspNum = PartNo
*
C/Exec Sql
C+ Call SPrcSel 10
C+ (:Action, :DspNum, :DspDes, :DspQty, :DspPrc, :DspDat)
C/End-Exec
Database access with RPG IV 343

*
C If Action = Error
C Eval InvalidRec = *On
C Else
C Exfmt DspRec2
C Select
C When Exit Or Cancel
C Leave
*
* Update selected record in file Parts
*
C When UpdateRec
C Eval Action = UpdRecord
*
C/Exec Sql
C+ Call SPrcUpd 8
C+ (:Action, :PartNo, :DspDes, :DspQty, :DspPrc, :DspDat)
C/End-Exec
*
* Delet selected record from file Parts
*
C When DeleteRec
*
C/Exec Sql
C+ Call SPrcDel (:PartNo) 9
C/End-Exec
*
C EndSl
C EndIf
C EndSl
C Exfmt DspRec1
C EndDo
* Loop end
C Eval *INLR = *On

SPRCRUN program notes
1 On the F specifications, only the display file must be defined. The database

file PARTS is accessed through stored procedures and is not defined in the
program.

2 On the D specifications, we use the indicator data structure DISPIND, where
all display file response and conditioning indicators are defined with
meaningful names.

3 The parameter ACTION is used for communication with stored procedures.
Defined constants provide meaningful names for all of its values to improve
the readability of the program.

4 The stored procedure SPRCSEL should be created before it is used. It
requires two input/output parameters and four output parameters, and relates
to the RPG IV program PROGSEL. As you will see later, this program contains
the embedded SQL statements SELECT, FETCH, OPEN and CLOSE cursor to
read data from the PARTS file.

5 Another stored procedure, SPRCUPD, is created. It requires one input/output
parameter and five input parameters, and relates to the RPG IV program
PROGUPD. This program contains only native file operations CHAIN, WRITE,
and UPDATE to show you that any program can be declared and used as a
stored procedure.

6 The stored procedure SPRCDEL is created. It has only one input parameter
and is written as a single SQL statement.

All these stored procedures can be created outside of the program using
interactive SQL (STRSQL). Created stored procedures are cataloged in the
SQL catalog, and can be used from any program using the SQL CALL
statement.
344 Who Knew You Could Do That with RPG IV?

7 Stored procedure SPRCUPD is called to insert a record.

8 Stored procedure SPRCUPD is called to update a record.

9 Stored procedure SPRCDEL is called to delete a record.

10 Stored procedure SPRCSEL is called to read a single record.

11 Stored procedure SPRCSEL is called to read the first record.

12 Stored procedure SPRCSEL is called to read the next record.

6.4.4.2 Source code for PROGSEL program
This program is called as a stored procedure SPRCSEL. It contains the
embedded SQL statements SELECT, FETCH, OPEN, and CLOSE cursor.

**
* Filename PROGSEL from DBSRC in RPGISCOOL
* RPG program PROGSEL with embedded SQL, used as stored procedure
*
* Examples of SELECT and FETCH
*
* Compile this source member as program PROGSEL (PDM Option=14)
* or use command CRTSQLRPGI with COMMIT(*NONE)
**
* Prototype and entry parameter definition
*
D ProgSel PR EXTPGM('PROGSEL') 1
D Action 1
D PartNo 5S 0
D PartDs 25
D PartQy 5S 0
D PartPr 6S 2
D PartDt D
*
D ProgSel PI 2
D Action 1
D PartNo 5S 0
D PartDs 25
D PartQy 5S 0
D PartPr 6S 2
D PartDt D
* Meaning of Action parameter
*
D SingleRec C CONST('S') 3
D FirstRec C CONST('F')
D NextRec C CONST('N')
D EndOfFile C CONST('E')
D Error C CONST('X')
*--
*
C Select
C When Action = SingleRec
*
* Read single record from file Parts
*
C/Exec Sql
C+ Select * Into :PartNo, :PartDs, :PartQy, :PartPr, :PartDt 4
C+ From Parts
C+ Where PartNum = :PartNo
C/End-Exec
*
C If SqlStt = '02000'
C Eval Action = Error
C Endif
C When Action = FirstRec
*
C/Exec Sql
C+ Declare C1 Cursor For 5
C+ Select * From Parts
C+ Order by PartNum
C+ For Fetch Only
C/End-Exec
*
C/Exec Sql
C+ Open C1 6
Database access with RPG IV 345

C/End-Exec
*
* Read first record from file Parts
*
C/Exec Sql
C+ Fetch C1 Into :PartNo, :PartDs, :PartQy, :PartPr, :PartDt 7
C/End-Exec
*
C When Action = NextRec
*
* Read next record from file Parts
*
C/Exec Sql
C+ Fetch C1 Into :PartNo, :PartDs, :PartQy, :PartPr, :PartDt 7
C/End-Exec
*
C If SqlStt = '02000'
C Eval Action = EndOfFile
*
C/Exec Sql
C+ Close C1 8
C/End-Exec
*
C Endif
C EndSl
C Return

PROGSEL program notes
1 The prototype and procedure interface for the main procedure replace the

*ENTRY parameter list required in a called program.

2 The procedure interface defines the required parameters for this program.

3 To define meaningful names for different values of ACTION parameter, we
recommend that you use constants.

4 To read a single record, we use the SELECT statement with the INTO clause.
If the record doesn’t exist, the ACTION parameter is returned with the value
"X" to signal an error.

5 When reading all records from the file, the cursor technique is required. The
DECLARE statement defines the cursor and relates it to the corresponding
SELECT statement.

6 The OPEN statement runs the defined SELECT and prepares the result table.

7 The FETCH statement reads a single record from the result table. At the end
of the result table, when SQLSTT=’02000’, the ACTION parameter is returned
with the value "E".

8 After reading all records from the result table, the cursor should be closed to
be ready for the next open.

6.4.4.3 Source code for the PROGUPD program
This program is called as a stored procedure SPRCUPD. It contains only the
native file operations CHAIN, WRITE, and UPDATE and illustrates that any
program can be declared and used as a stored procedure.

**
* Filename PROGUPD from DBSRC in RPGISCOOL
* RPG program PROGUPD w/o embedded SQL, used as stored procedure
*
* Examples of CHAIN, WRITE and UPDATE
*
* Compile this source member as program PROGUPD (PDM Option=14)
* or use command CRTBNDRPG
**
FParts UF A E K Disk
*--
* Prototype and entry parameter definition
346 Who Knew You Could Do That with RPG IV?

*
D ProgUpd PR EXTPGM('PROGUPD') 1
D Action 1
D PartNo 5S 0
D PartDs 25
D PartQy 5S 0
D PartPr 6S 2
D PartDt D
*
D ProgUpd PI 2
D Action 1
D PartNo 5S 0
D PartDs 25
D PartQy 5S 0
D PartPr 6S 2
D PartDt D
* Meaning of Action parameter
*
D UpdRecord C CONST('U') 3
D AddRecord C CONST('I')
D Error C CONST('X')
*--
* Read a record from file Parts
*
C PartNo Chain Parts 4
C Eval PartNum = PartNo
C Eval PartDes = PartDs
C Eval PartQty = PartQy
C Eval PartPrc = PartPr
C Eval PartDat = PartDt
C Select
C When Action = UpdRecord And %FOUND(Parts)
* Update a record in file Parts
C Update PartR
C When Action = AddRecord And Not %FOUND(Parts)
* Write a record into file Parts
C Write PartR
C Other
* Return error in other cases
C Eval Action = Error
C EndSl
C Return

PROGUPD program notes
1 Prototype and procedure interface for the main procedure replace the *ENTRY

parameter list, which is required in a called program.

2 The procedure interface defines the required parameters for this program.

3 To define meaningful names for different values of the ACTION parameter, we
recommend that you use constants.

4 With the CHAIN operation, we first check if the record exists, and then update
the record, write the record, or return an error through the ACTION parameter.

You can try this example by compiling the code from this section on your
AS/400 system. Use the following commands to create the programs:

CRTSQLRPGI OBJ(RPGISCOOL/SPRCRUN) SRCFILE(RPGISCOOL/DBSRC) +
COMMIT(*NONE) DATFMT(*ISO)
CRTSQLRPGI OBJ(RPGISCOOL/PROGSEL) SRCFILE(RPGISCOOL/DBSRC)
CRTBNDRPG PGM(RPGISCOOL/PROGUPD) SRCFILE(RPGISCOOL/DBSRC)

To run the program, enter the following command:

CALL PGM(SPRCRUN)

Try it yourself
Database access with RPG IV 347

6.5 Call Level Interface

DB2 Call Level Interface (CLI) is a callable SQL programming interface that is
supported in all DB2 environments except for DB2 for MVS and DB2 for VSE and
VM. A callable SQL interface is an application program interface (API) for
database access that uses function calls to invoke dynamic SQL statements.

It is an alternative to embedded dynamic SQL. The important difference between
embedded dynamic SQL and DB2 CLI lies in how the SQL statements are
invoked. On the AS/400 system, this interface is available to any of the ILE
languages, including RPG IV.

DB2 CLI also provides full Level 1 Microsoft's Open Database Connectivity
(ODBC) support, plus many Level 2 functions. ODBC is based on the emerging
X/Open and SQL Access Group Call Level Interface specification.

The X/Open company and the SQL Access Group (SAG) are jointly developing a
standard specification for a callable SQL interface referred to as X/Open CLI or
SAG CLI. The goal of this interface is to increase the portability of applications by
enabling them to become independent of any one database server.

Microsoft developed a callable SQL interface called Open Database Connectivity
(ODBC) for MS Windows based on a preliminary draft of X/Open CLI. ODBC has
expanded X/Open CLI and provides extended functions supporting additional
capability. ODBC provides a Driver Manager for Windows, which offers a central
point of control for each ODBC.

6.5.1 Differences between DB2 CLI and embedded SQL
An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the
database, and executed. In contrast, a DB2 CLI application does not require
precompilation or binding, but instead uses a standard set of functions to execute
SQL statements and related services at runtime.

This difference is important because, traditionally, precompilers have been
specific to a database product, which effectively ties your applications to that
product. DB2 CLI enables you to write portable applications that are independent
of any particular database product. This independence means a DB2 CLI
application does not have to be recompiled or rebound to access different
database products, but rather selects the appropriate one at runtime.

DB2 CLI can execute any SQL statement that can be prepared dynamically in
embedded SQL. This is guaranteed because DB2 CLI doesn't actually execute
the SQL statement itself, but passes it to the DBMS for dynamic execution.

6.5.1.1 Advantages of using DB2 CLI
The DB2 CLI interface has several key advantages over embedded SQL:

• It is ideally suited for a client-server environment, in which the target database
is not known when the application is built. It provides a consistent interface for
executing SQL statements, regardless of the database server to which the
application is connected.

• It increases the portability of applications by removing the dependence on
precompilers. Applications are distributed not as source code that must be
348 Who Knew You Could Do That with RPG IV?

preprocessed for each database product, but as compiled applications or
runtime libraries.

• DB2 CLI applications do not have to be bound to each database to which they
connect.

• DB2 CLI applications can connect to multiple databases simultaneously.

• DB2 CLI applications are not responsible for controlling global data areas,
such as SQLCA and SQLDA, since they are with embedded SQL applications.
Instead, DB2 CLI allocates and controls the necessary data structures and
provides a handle for the application to reference them.

• As important as any other technical issue, the DB2 CLI support is included in
the base OS/400 support and is available as a part of system APIs.

6.5.1.2 Deciding which interface to use
The interface you choose depends on your application.

DB2 CLI is ideally suited for query-based applications that require portability and
do not require the APIs or utilities offered by a particular DBMS (for example,
catalog database, backup, and restore). This does not mean that DBMS specific
APIs cannot be called from an application using DB2 CLI, but rather that the
application will no longer be as portable.

Another important consideration is the performance comparison between a
dynamic and static SQL. A dynamic SQL is prepared at runtime, while a static
SQL is prepared at the precompile stage. Since preparing statements requires
additional processing time, static SQL may be more efficient. If you choose static
over dynamic SQL, then DB2 CLI is not an option.

In most cases, the choice between either interface is open to personal
preference. Your previous experience may make one alternative seem more
intuitive than the other.

6.5.2 Writing a DB2 CLI application
This section introduces a conceptual view of a typical DB2 CLI application. A DB2
CLI application can be broken down into a set of tasks. Some of these tasks are
organized into discrete steps, while others may apply throughout the application.
Each task is carried out by calling one or more DB2 CLI functions. Every DB2 CLI
application contains the three main tasks shown in Figure 39 on page 350.
Database access with RPG IV 349

Figure 39. Conceptual view of a DB2 CLI application

The functions must be called in the sequence shown or an error is returned. The
tasks of the application are explained here:

Initialization This task allocates and initializes some resources in preparation
for the main Transaction Processing task.

Transaction Processing
This is the main task of the application. SQL statements are
passed to DB2 CLI to query and modify the data.

Termination This task frees allocated resources. The resources generally
consist of data areas identified by unique handles. After the
resources have been freed, these handles can be used by other
tasks.

In addition to the three tasks listed here, there are general tasks, such as
handling diagnostic messages, which occur throughout an application.

6.5.3 Initialization and termination
Figure 40 shows the function call sequences for both the initialization and
termination tasks. The transaction processing task in the middle of the diagram is
shown in Figure 41 on page 352.

The initialization task allocates and initializes environment and connection
handles. The termination task frees them.

A handle is a variable that refers to a data object controlled by DB2 CLI. Using
handles frees the application from having to allocate and manage global
variables or data structures, such as the SQLDA or SQLCA, used in embedded
SQL interfaces for IBM DBMS. An application then passes the appropriate handle
when it calls other DB2 CLI functions.

There are three types of handles:

Environment handle
The environment handle refers to the data object that contains global
information regarding the state of the application. This handle is allocated
by calling SQLAllocEnv() and freed by calling SQLFreeEnv(). An

Initilization

Transaction
Processing

Termination
350 Who Knew You Could Do That with RPG IV?

environment handle must be allocated before a connection handle can be
allocated. Only one environment handle can be allocated per application.

Connection handle
A connection handle refers to a data object that contains information
associated with a connection managed by DB2 CLI. This includes general
status information, transaction status, and diagnostic information. Each
connection handle is allocated by calling SQLAllocConnect() and freed by
calling SQLFreeConnect(). An application must allocate a connection
handle for each connection to a database server.

Statement handle
A statement handle refers to the data object that contains information
about an SQL statement managed by DB2 CLI. This includes information
such as dynamic arguments, cursor information, bindings for dynamic
arguments and columns, result values, and status information. Each
statement handle is allocated by calling SQLAllocStmt() and freed by
calling SQLFreeStmt(), and must be associated with a connection handle.

Figure 40. Conceptual view of initialization and termination tasks

6.5.4 Transaction processing
Figure 41 on page 352 shows the steps and the DB2 CLI functions in the
transaction processing task. This task involves five steps:

Allocate Environment

SQLAllocEnv()

Allocate Connection

SQLAllocConnect()

Connect

SQLConnect()

Allocate Statements(s)
SQLAllocStmt()

Transaction
Processing

Free Statements(s)

SQLFreeStmt()

Disconnect

SQLDisconnect()

Free Connection
SQLFreeConnect()

Allocate Environment

SQLFreeEnv()

In
italizatio

n
Term

in
atio

n

Database access with RPG IV 351

1. Allocate statement handles.
2. Prepare and execute SQL statements.
3. Process the results.
4. Free the statement handles.
5. Commit or rollback.

Figure 41. Transaction processing

6.5.4.1 Allocating statement handles
To run a statement, allocate a statement handle using SQLAllocStmt(). Each
statement handle must be associated with a connection handle.

6.5.4.2 Preparation and execution of SQL statements
Once a statement handle has been allocated, there are two methods of
specifying and executing SQL statements:

• Prepare then execute in order:

1. Call SQLPrepare() with an SQL statement as an argument
2. Call SQLBindParam(), if the SQL statement contains parameter markers
3. Call SQLExecute()

Execute Statement

SQLExecute()

Direct Execute
Statement

SQLBindParam()
SQLExecDirect()

Prepare Statement

SQLPrepare()
SQLBindParam()

Allocate Statement

SQLAllocStmt()

Update Data:
(UPDATE, DELETE,

INSERT)

Other: (ALTER,
CREATE, DROP,

GRANT, REVOKE)

Receive Query Results
(SELECT)

SQLNumResultsCol()

SQLDescribeCol()
or

SQLColAttributes()

SQLBindCol()

SQLFetch()

SQLGetData()

SQLRowCount() (no functions required)

Free Statement

SQLFreeStmt()

Commit or Rollback
SQLTransact()
352 Who Knew You Could Do That with RPG IV?

• Execute direct:

1. Call SQLBindParam() if the SQL statement contains parameter markers
2. Call SQLExecDirect() with an SQL statement as an argument

The first method splits the preparation of the statement from the execution. This
method is used when:

• The statement is executed repeatedly (usually with different parameter
values). This avoids having to prepare the same statement more than once.

• The application requires information about the columns in the result set, prior
to statement execution.

The second method combines the preparation step and the execution step into
one. This method is used when:

• The statement is executed once. This avoids having to call two functions to
execute the statement.

• The application does not require information about the columns in the result
set before the statement is executed.

Both execution methods allow the use of parameter markers in place of an
expression (or host variable in embedded SQL) in an SQL statement.

Parameter markers are represented by the "?" (question mark) character and
indicate the position in the SQL statement where the contents of application
variables are to be substituted when the statement is executed. The markers are
referenced sequentially, from left to right, starting at 1.

When an application variable is associated with a parameter marker, it is bound
to the parameter marker. Binding is carried out by calling the SQLBindParam()
function, which requires the following information:

• The number of the parameter marker
• A pointer to the application variable
• The SQL type of the parameter
• The data type and length of the variable

The application variable is called a deferred argument since only the pointer is
passed when SQLBindParam() is called. No data is read from the variable until
the statement is executed. This applies to both buffer arguments and arguments
that indicate the length of the data in the buffer. Deferred arguments allow the
application to modify the contents of the bound parameter variables and repeat
the execution of the statement with the new values.

In DB2 for AS/400 SQL Call Level Interface, SC41-5806, for V4R3 and V4R4, you
can find the statement that the SQLBindParam() function allows to bind a variable
of a different type from that required by the SQL statement. In this case, DB2 CLI
should convert the contents of the bound variable to the correct type. For
example, the SQL statement may require an integer value, but your application
has a string representation of an integer, which should be converted to an integer
when the statement is executed. This conversion is not yet possible and should
be available in future releases.
Database access with RPG IV 353

6.5.4.3 Processing results
The next step after the statement has been executed depends on the type of SQL
statement.

Processing SELECT statements
When processing a SELECT statement, the following steps are generally needed
to retrieve each row of the result set:

1. Establish the structure of the result set, number of columns, column types,
and lengths.

2. Optionally, bind application variables to columns to receive the data.

3. Repeatedly fetch the next row of data, and receive it into the bound
application variables.

4. Optionally, columns that were not previously bound can be retrieved by calling
SQLGetData() after each successful fetch.

Each of these steps requires some diagnostic checks.

The first step requires you to analyze the executed or prepared statement. If the
SQL statement was generated by the application, this step isn't necessary. This is
because the application knows the structure of the result set and the data types
of each column. If the SQL statement was generated at runtime (entered by a
user), the application needs to query:

• The number of columns
• The type of each column
• The names of each column in the result set

This information can be obtained by calling SQLNumResultCols() and
SQLDescribeCol() (or SQLColAttributes()) after preparing the statement or after
executing the statement.

The second step allows the application to retrieve column data directly into an
application variable on the next call to SQLFetch(). For each column to be
retrieved, the application calls SQLBindCol() to bind an application variable to a
column in the result set. Similar to variables bound to parameter markers using
SQLBindParam(), columns are bound by using deferred arguments. This time the
variables are output arguments, and data is written to them when SQLFetch() is
called. SQLGetData() can also be used to retrieve data, so calling SQLBindCol()
is optional.

The third step is to call SQLFetch() to fetch the first or next row of the result set. If
any columns have been bound, the application variable is updated. If any data
conversion was indicated by the data types specified on the call to SQLBindCol,
the conversion occurs when SQLFetch() is called.

The last (optional) step is to call SQLGetData() to retrieve any columns that were
not previously bound. All columns can be retrieved this way, provided they were
not bound, or a combination of both methods can also be used. SQLGetData() is
also useful for retrieving variable length columns in smaller pieces, which cannot
be done with bound columns. Data conversion can also be indicated here, as in
SQLBindCol().
354 Who Knew You Could Do That with RPG IV?

Processing UPDATE, DELETE, and INSERT statements
If the statement is modifying data (UPDATE, DELETE or INSERT), no action is
required, other than the normal check for diagnostic messages. In this case,
SQLRowCount() can be used to obtain the number of rows affected by the SQL
statement.

6.5.4.4 Freeing statement handles
To end processing for a particular statement handle, you should call
SQLFreeStmt(). This function can be used to do one or more of the following
actions:

• Unbind all columns
• Unbind all parameters
• Close any cursors and discard the results
• Drop the statement handle and release all associated resources

The statement handle can be reused provided that it is not dropped.

6.5.4.5 Commit or rollback
The last step is to either commit or rollback the transaction, using SQLTransact().
A transaction is a recoverable unit of work or a group of SQL statements that can
be treated as one atomic operation. This means that all the operations within the
group are to be completed (committed) or undone (rolled back), as if they were a
single operation.

When using DB2 CLI, transactions are started implicitly with the first access to
the database using SQLPrepare(), SQLExecDirect(), or SQLGetTypeInfo(). The
transaction ends when you use SQLTransact() to either rollback or commit the
transaction. This means that any SQL statements executed between these are
treated as one unit of work.

6.5.5 Diagnostic
Diagnostics refers to dealing with warning or error conditions generated within an
application. There are two levels of diagnostics when calling DB2 CLI functions:

• Return Codes
• SQLSTATEs (diagnostic messages)

Return codes
Each function gives a return code to inform the program about possible errors or
exceptions. Table 79 on page 356 describes all DB2 CLI function return codes.
Database access with RPG IV 355

Table 79. CLI function return codes

SQLSTATEs
SQLSTATEs are alphanumeric strings of five characters (bytes) with a format of
ccsss, where cc indicates a class and sss indicates a subclass.

An SQLSTATE may have a class of:

• 01 indicates a warning
• HY is generated by the CLI driver (either DB2 CLI or ODBC)

Follow these guidelines for using SQLSTATEs within your application:

• Always check the function return code before calling SQLError() to determine
if diagnostic information is available.

• Use SQLSTATEs rather than the native error code.

• To increase your application's portability, only build dependencies on the
subset of DB2 CLI SQLSTATEs that are defined by the X/Open specification,
and return the additional ones as information only.

• For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message will include the IBM defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returned the error.

6.5.6 Data types and data conversion
When writing a DB2 CLI application, it is necessary to work with both SQL data
types and RPG IV data types. This is unavoidable since DBMS uses SQL data
types and the application must use RPG IV data types. This means the
application must match RPG IV data types to SQL data types when transferring
data between DBMS and the application (when calling DB2 CLI functions).

To help address this, DB2 CLI provides symbolic names for the various data
types, and manages the transfer of data between the DBMS and the application.
It also performs data conversion if required. To accomplish this, DB2 CLI needs to
know both the source and target data type. This requires the application to
identify both data types using symbolic names.

Return code Value Description

SQL_SUCCESS 0 The function completed successfully, no
additional SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO 1 The function completed successfully, with a
warning or other information. Call SQLError()
to receive the SQLSTATE and other error
information.

SQL_NO_DATA_FOUND 100 The function returned successfully, but no
relevant information was found.

SQL_ERROR -1 The function failed. Call SQLError() to receive
the SQLSTATE and any other error
information.

SQL_INVALID_HANDLE -2 The function failed due to an invalid handle
(environment, connection or statement
handle) passed as an input argument.
356 Who Knew You Could Do That with RPG IV?

The symbolic names are used in functions SQLBindParam(), SQLBindCol(), and
SQLGetData() to indicate the data types of the arguments.

SQL symbolic names are defined as integer values and should be declared in an
include file to be available to all applications.

The following code snippet illustrates how symbolic names can be defined:

* Standard SQL data types

DSQL_CHAR C CONST(1)
DSQL_NUMER C CONST(2)
DSQL_DECIM C CONST(3)
DSQL_INTEG C CONST(4)
DSQL_SMINT C CONST(5)
DSQL_FLOAT C CONST(6)
DSQL_REAL C CONST(7)
DSQL_DOUBLE C CONST(8)
DSQL_DATTIM C CONST(9)
DSQL_VARCH C CONST(12)
DSQL_GRAPH C CONST(95)
DSQL_VARGR C CONST(96)
DSQL_DATE C CONST(91)
DSQL_TIME C CONST(92)
DSQL_TIMEST C CONST(93)
DSQL_CD_DAT C CONST(1)
DSQL_CD_TIM C CONST(2)
DSQL_CD_TST C CONST(3)
DSQL_ALLTYP C CONST(0)

6.5.7 Functions
All DB2 CLI functions are available as procedures in the service program
QSQCLI in the library QSYS. In version V4R4, there are 77 functions. They are
described in the IBM manual DB2 for AS/400 SQL Call Level Interface (ODBC),
SC41-5806.

We have included here only the descriptions of those functions that we need in
our example.

6.5.7.1 SQLAllocEnv(): Allocate environment handle
SQLAllocEnv() allocates an environment handle and associated resources. An
application must call this function prior to SQLAllocConnect() or any other DB2
CLI functions. The henv value is passed in all later function calls that require an
environment handle as input.

The C syntax is:

SQLRETURN SQLAllocEnv (SQLHENV *phenv);

Table 80 shows the parameters for this function.

Table 80. Parameters for the SQLAllocEnv function

There can be only one active environment at any one time per application. Any
later calls to SQLAllocEnv() return the existing environment handle. The return
codes are SQL_SUCCESS and SQL_ERROR.

Argument Description Use RPG data type C data type

phenv Pointer to environment
handle

Output Integer(10) SQLHENV *
Database access with RPG IV 357

6.5.7.2 SQLAllocConnect(): Allocate connection handle
SQLAllocConnect() allocates a connection handle and associated resources
within the environment identified by the input environment handle.

SQLAllocEnv() must be called before calling this function.

The C syntax is:

SQLRETURN SQLAllocConnect (SQLHENV henv,
SQLHDBC *phdbc);

Table 81 shows the parameters for this function.

Table 81. Parameters for the SQLAllocConnect function

The output connection handle is used by DB2 CLI to reference all information
related to the connection, including general status information, the transaction
state, and error information. The return codes are SQL_SUCCESS,
SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.3 SQLConnect(): Connect to a data source
SQLConnect() establishes a connection to the target database. The application
must supply a target SQL database, and optionally an authorization-name and an
authentication-string. SQLAllocConnect() must be called before calling this
function. This function must be called before calling SQLAllocStmt().

The C syntax is:

SQLRETURN SQLConnect (SQLHDBC hdbc,
SQLCHAR *szDSN,
SQLSMALLINT cbDSN,
SQLCHAR *szUID,
SQLSMALLINT cbUID,
SQLCHAR *szAuthStr,
SQLSMALLINT cbAuthStr);

Table 82 shows the parameters for this function.

Table 82. Parameters for the SQLConnect function

Argument Description Use RPG data type C data type

henv Environment handle Input Integer(10) SQLHENV

phdbc Pointer to connection handle Output Integer(10) SQLHDBC *

Argument Description Use RPG data type C data type

hdbc Connection handle Input Integer(10) SQLHDBC

*szDSN Database name Input Pointer SQLCHAR *

cbDSN Length of database name Input Integer(5) SQLSMALLINT

*szUID User Id Input Pointer SQLCHAR *

cbUID Length of User Id Input Integer(5) SQLSMALLINT

*szAuthStr User password Input Pointer SQLCHAR *

cbAuthStr Length of password Input Integer(5) SQLSMALLINT
358 Who Knew You Could Do That with RPG IV?

You can define various connection characteristics (options) in the application
using SQLSetConnectOption().

The database name must already be defined on the system for the connect to
work. On AS/400 system, you can use the Work with Relational Database
Directory Entries (WRKRDBDIRE) command to determine which data sources
have been defined already and to optionally define additional data sources.

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.4 SQLSetConnectOption(): Set connection option
SQLSetConnectOption() sets connection attributes for a particular connection.

The C syntax is:

SQLRETURN SQLSetConnectOption (HDBC hdbc,
SQLSMALLINT fOption,
SQLPOINTER vParam);

Table 83 shows the parameters for this function.

Table 83. Parameters for the SQLSetConnectOption function

The SQLSetConnectOption() provides the same function as
SQLSetConnectAttr(). Both functions are supported for compatibility reasons.

All connection and statement options set through the SQLSetConnectOption()
persist until SQLFreeConnect() is called or the next SQLSetConnectOption() call.

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.5 SQLAllocStmt(): Allocate a statement handle
SQLAllocStmt() allocates a new statement handle and associates it with the
connection specified by the connection handle. There is no defined limit on the
number of statement handles that can be allocated at any one time.
SQLConnect() must be called before calling this function. This function must be
called before SQLBindParam(), SQLPrepare(), SQLExecute(), SQLExecDirect(),
or any other function that has a statement handle as one of its input arguments.

The C syntax is:

SQLRETURN SQLAllocStmt (SQLHDBC hdbc,
SQLHSTMT *phstmt);

Argument Description Use RPG data type C data type

hdbc Connection handle Input Integer(10) HDBC

fOption Connect option to set Input Integer(5) SQLSMALLINT

vParam Value associated with option Input Pointer SQLPOINTER
Database access with RPG IV 359

Table 84 shows the parameters for this function.

Table 84. Parameters for the SQLAllocStmt function

DB2 CLI uses each statement handle to relate all the descriptors, result values,
cursor information, and status information to the SQL statement processed.
Although each SQL statement must have a statement handle, you can reuse the
handles for different statements.

The return codes are SQL_SUCCESS, SQL_ERROR, and
SQL_INVALID_HANDLE.

6.5.7.6 SQLPrepare(): Prepare a statement
SQLPrepare() associates an SQL statement with the input statement handle and
sends the statement to the DBMS to be prepared. The application can reference
this prepared statement by passing the statement handle to other functions.

If the statement handle has been used with a SELECT statement, SQLFreeStmt()
must be called to close the cursor before calling SQLPrepare().

The C syntax is:

SQLRETURN SQLPrepare (SQLHSTMT hstmt,
SQLCHAR *szSqlStr,
SQLINTEGER cbSqlStr);

Table 85 shows the parameters for this function.

Table 85. Parameters for the SQLPrepare function

A prepared statement may be executed once or multiple times by calling
SQLExecute(). The SQL statement remains associated with the statement handle
until the handle is used with another SQLPrepare(), SQLExecDirect(),
SQLColumns(), SQLSpecialColumns(), SQLStatistics(), or SQLTables().

The SQL statement string may contain parameter markers. A parameter marker
is represented by a "?" (question mark) character and indicates a position in the
statement where the value of an application variable is to be substituted, when
SQLExecute() is called. SQLBindParam() is used to bind (or associate) an
application variable to each parameter marker and to indicate if any data
conversion should be performed at the time the data is transferred.

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, and SQL_INVALID_HANDLE.

Argument Description Use RPG data type C data type

hdbc Connection handle Input Integer(10) SQLHDBC

*phstmt Pointer to statement handle Output Integer(10) SQLHSTMT *

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT

*szSqlStr SQL statement string Input Pointer SQLCHAR *

cbSqlStr Length of statement string Input Integer(5) SQLINTEGER
360 Who Knew You Could Do That with RPG IV?

6.5.7.7 SQLBindCol(): Bind a column to an application variable
SQLBindCol() associates (binds) columns in a result set to application variables
(storage buffers) for all data types. Data is transferred from the DBMS to the
application when SQLFetch() is called.

This function is also used to specify any data conversion required. It is called
once for each column in the result set that the application needs to retrieve.

SQLPrepare() or SQLExecDirect() is usually called before this function. It may
also be necessary to call SQLDescribeCol() or SQLColAttributes().

SQLBindCol() must be called before SQLFetch() to transfer data to the storage
buffers specified by this call.

The C syntax is:

SQLRETURN SQLBindCol (SQLHSTMT hstmt,
SQLSMALLINT icol,
SQLSMALLINT fCType,
SQLPOINTER rgbValue,
SQLINTEGER cbValueMax,
SQLINTEGER *pcbValue);

Table 86 shows the parameters for this function.

Table 86. Parameters for the SQLBindCol function

For this function, both rgbValue and pcbValue are deferred outputs, meaning that
the storage locations to which these pointers point are not updated until
SQLFetch() is called. The locations referred to by these pointers must remain
valid until SQLFetch() is called.

The application calls SQLBindCol() once for each column in the result set that it
wants to retrieve. When SQLFetch() is called, the data in each of these bound
columns is placed in the assigned location (given by the pointers rgbValue and
pcbValue). Columns are identified by a number, assigned sequentially from left to
right, starting at 1.

The application must ensure enough storage is allocated for the data to be
retrieved. If the data type is either SQL_CHAR or SQL_DEFAULT, the available
size of the variable (cbValueMax) must be greater than 0. If the data type is either
SQL_DECIMAL or SQL_NUMERIC, the size of the variable can be determined by
using the following formula: (precision * 256) + scale. For example, the size of
variable for a numeric field, declared as (6,2), calculated by using this formula is:

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT

icol Column number Input Integer(5) SQLSMALLINT

fCType Application data type Input Integer(5) SQLSMALLINT

rgbValue Pointer to variable where
to store column data

Output
(defer)

Pointer SQLPOINTER

cbValueMax Available size of variable Input Integer(10) SQLINTEGER

*pbcValue Size of data returned into
variable

Output
(defer)

Integer(10) SQLINTEGER *
Database access with RPG IV 361

6 * 256 + 2 = 1538

The application can query the attributes (such as data type and length) of the
column by first calling SQLDescribeCol() or SQLColAttributes(). This information
can then be used to specify the correct data type of the storage locations or to
indicate data conversion to other data types.

Return codes are SQL_SUCCESS, SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.8 SQLBindParam(): Binds a buffer to a parameter marker
SQLBindParam() binds an application variable to a parameter marker in an SQL
statement. This function can also be used to bind an application variable to a
parameter of a stored procedure CALL statement where the parameter may be
input or output. This function is the same as SQLSetParam().

The C syntax is:

SQLRETURN SQLBindParam (SQLHSTMT hstmt,
SQLSMALLINT ipar,
SQLSMALLINT fCType,
SQLSMALLINT fSqlType,
SQLINTEGER cbParamDef,
SQLSMALLINT ibScale,
SQLPOINTER rgbValue,
SQLINTEGER *pcbValue);

Table 87 shows the parameters for this function.

Table 87. Parameters for the SQLBindParam function

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.9 SQLExecute(): Execute a statement
SQLExecute() executes a statement that was successfully prepared by using
SQLPrepare() once or multiple times. The statement is executed using the
current values of any application variables that were bound to parameter markers
by SQLBindParam().

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT

ipar Parameter marker
number

Input Integer(5) SQLSMALLINT

fCType Application data type Input Integer(5) SQLSMALLINT

fSqlType SQL data type Input Integer(5) SQLSMALLINT

cbParamDef Length of parameter Input Integer(10) SQLINTEGER

ibScale Number of decimal
positions

Input Integer(5) SQLSMALLINT

rgbValue Buffer with actual data
for parameter

Input or
Output

Pointer SQLPOINTER

*pbcValue Value interpreted during
execution

Input Integer(10) SQLINTEGER *
362 Who Knew You Could Do That with RPG IV?

The C syntax is:

SQLRETURN SQLExecute (SQLHSTMT hstmt);

Table 88 shows the parameters for this function.

Table 88. Parameters for the SQLExecute function

The SQL statement string may contain parameter markers. A parameter marker
is represented by a "?" (question mark) character and indicates a position in the
statement where the value of an application variable is to be substituted, when
SQLExecute() is called. SQLBindParam() is used to bind (or associate) an
application variable to each parameter marker and to indicate if any data
conversion should be performed at the time the data is transferred.

All parameters must be bound before calling SQLExecute(). Once the application
has processed the results from the SQLExecute() call, it can execute the
statement again with new (or the same) values in the application variables.

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, SQL_INVALID_HANDLE, and SQL_NO_DATA_FOUND.

6.5.7.10 SQLExecDirect(): Execute a statement directly
SQLExecDirect directly executes the specified SQL statement. The statement
can only be executed once. Also, the connected database server must be able to
prepare the statement.

The C syntax is:

SQLRETURN SQLExecDirect (SQLHSTMT hstmt,
SQLCHAR *szSqlStr,
SQLINTEGER cbSqlStr);

Table 89 shows the parameters for this function.

Table 89. Parameters for the SQLExecDirect function

The SQL statement string may contain parameter markers. A parameter marker
is represented by a "?" (question mark) character, and indicates a position in the
statement where the value of an application variable is to be substituted when
SQLExecDirect() is called. SQLBindParam() binds (or associates) an application
variable to each parameter marker to indicate if any data conversion should be
performed at the time the data is transferred. All parameters must be bound
before calling SQLExecDirect().

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, SQL_INVALID_HANDLE, and SQL_NO_DATA_FOUND.

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT

*szSqlStr SQL statement string Input Pointer SQLCHAR *

cbSqlStr Length of statement string Input Integer(5) SQLINTEGER
Database access with RPG IV 363

6.5.7.11 SQLFetch(): Fetch next row
SQLFetch() advances the cursor to the next row of the result set and retrieves
any bound columns.

SQLFetch() can be used to receive the data directly into variables that you
specify with SQLBindCol(), or the columns can be received individually after the
fetch by calling SQLGetData(). Data conversion is also performed when
SQLFetch() is called, if conversion was indicated when the column was bound.

The C syntax is:

SQLRETURN SQLFetch (SQLHSTMT hstmt);

Table 90 shows the parameters for this function.

Table 90. Parameters for the SQLFetch function

SQLFetch() can only be called if the most recently executed statement on hstmt
was a SELECT.

The number of application variables bound with SQLBindCol() must not exceed
the number of columns in the result set, or SQLFetch() will fail.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does
not return data to the application, but advances the cursor. In this case,
SQLGetData() can be called to obtain all of the columns individually. Data in
unbound columns is discarded when SQLFetch() advances the cursor to the next
row.

When all the rows have been retrieved from the result set, or the remaining rows
are not needed, SQLFreeStmt() should be called to close the cursor and discard
the remaining data and associated resources.

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, SQL_INVALID_HANDLE, and SQL_NO_DATA_FOUND.

6.5.7.12 SQLTransact(): Transaction management
SQLTransact() commits or rolls back the current transaction in the connection. All
changes to the database performed on the connection since the connect time or
the previous call to SQLTransact() (whichever is most recent) are committed or
rolled back.

If a transaction is active on a connection, the application must call SQLTransact()
before it can disconnect from the database.

The C syntax is:

SQLRETURN SQLTransact (SQLHENV henv,
SQLHDBC hdbc,
SQLSMALLINT fType);

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT
364 Who Knew You Could Do That with RPG IV?

Table 91 shows the parameters for this function.

Table 91. Parameters for the SQLTransact function

Completing a transaction with SQL_COMMIT or SQL_ROLLBACK has the
following effects:

• Prepared SQL statements do not survive transactions. The application must
prepare statements again to execute them as part of a new transaction. This
means that statement handles are still valid after a call to SQLTransact(), and
can be reused for later SQL statements or deallocated by calling
SQLFreeStmt().

• Cursor names, bound parameters, and column bindings survive transactions.

• Open cursors are closed, and any result sets that are pending retrieval are
discarded.

The return codes are SQL_SUCCESS, SQL_ERROR, and
SQL_INVALID_HANDLE.

6.5.7.13 SQLError(): Retrieve error information
SQLError() returns the diagnostic information associated with the most recently
called DB2 CLI function for a particular statement, connection, or environment
handle. The information consists of a standardized SQLSTATE, native error code,
and a text message.

Call SQLError() after receiving a return code of SQL_ERROR or
SQL_SUCCESS_WITH_INFO from another function call.

The C syntax is:

SQLRETURN SQLError (SQLHENV henv,
SQLHDBC hdbc,
SQLHSTMT hstmt,
SQLCHAR *szSqlState,
SQLINTEGER *pfNativeError,
SQLCHAR *szErrorMsg,
SQLSMALLINT cbErrorMsgMax,
SQLSMALLINT *pcbErrorMsg);

Table 92 shows the parameters for this function.

Table 92. Parameters for the SQLError function

Argument Description Use RPG data type C data type

henv Environment handle Input Integer(10) SQLHENV

hdbc Database connection handle Input Integer(10) SQLHDBC

fType Desired action for transaction Input Integer(5) SQLSMALLINT

Argument Description Use RPG data type C data type

henv Environment handle Input Integer(10) SQLHENV

hdbc Database connection
handle

Input Integer(10) SQLHDBC

hstmt Statement handle Input Integer(10) SQLHSTMT

*szSqlState SQLSTATE as a string Output Pointer SQLCHAR *
Database access with RPG IV 365

Use the following methods to obtain diagnostic information:

• For an environment, pass a valid environment handle. Set hdbc and hstmt to
SQL_NULL_HDBC and SQL_NULL_HSTMT respectively.

• For a connection, pass a valid database connection handle, and set hstmt to
SQL_NULL_HSTMT. The henv argument is ignored.

• For a statement, pass a valid statement handle. The henv and hdbc
arguments are ignored.

If diagnostic information generated by one DB2 CLI function is not retrieved
before a function other than SQLError() is called with the same handle, the
information for the previous function call is lost. This is true whether diagnostic
information is generated for the second DB2 CLI function call.

To avoid truncation of the error message, declare a buffer length of
SQL_MAX_MESSAGE_LENGTH + 1. The message text is never longer than this.

The return codes are SQL_SUCCESS, SQL_ERROR, SQL_INVALID_HANDLE,
and SQL_NO_DATA_FOUND.

6.5.7.14 SQLFreeStmt(): Free (or reset) a statement handle
SQLFreeStmt() ends processing on the statement referenced by the statement
handle. Use this function to:

• Close a cursor

• Reset parameters

• Unbind columns from variables

• Drop the statement handle and free the DB2 CLI resources associated with
the statement handle

SQLFreeStmt() is called after executing an SQL statement and processing the
results.

The C syntax is:

SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,
SQLSMALLINT fOption);

*pfNativeError Native error code
(SQLCODE)

Output Integer(10) SQLINTEGER *

*szErrorMsg Pointer to buffer with
message text

Output Pointer SQLCHAR *

cbErrorMsgMax Maximum length of
error message

Input Integer(5) SQLSMALLINT

*pcbErrorMsg Total length of error
message

Output Integer(5) SQLSMALLINT

Argument Description Use RPG data type C data type
366 Who Knew You Could Do That with RPG IV?

Table 93 shows the parameters for this function.

Table 93. Parameters for the SQLFreeStmt function

SQLFreeStmt() can be called with the following options:

• SQL_CLOSE

The cursor (if any) associated with the statement handle (hstmt) is closed and
all pending results are discarded. The application can reopen the cursor by
calling SQLExecute() with the same or different values in the application
variables (if any) that are bound to hstmt.

• SQL_DROP

DB2 CLI resources associated with the input statement handle are freed, and
the handle is invalidated. The open cursor, if any, is closed and all pending
results are discarded.

• SQL_UNBIND

All the columns bound by previous SQLBindCol() calls on this statement
handle are released.

• SQL_RESET_PARAMS

All the parameters set by previous SQLBindParam() calls on this statement
handle are released. The association between application variables or file
references and parameter markers in the SQL statement of the statement
handle is broken.

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.15 SQLDisconnect(): Disconnect from a data source
SQLDisconnect() closes the connection associated with the database connection
handle. After calling this function, either call SQLConnect() to connect to another
database, or call SQLFreeConnect().

The C syntax is:

SQLRETURN SQLDisconnect (SQLHDBC hdbc);

Table 94 shows the parameters for this function.

Table 94. Parameters for the SQLDisconnect function

If an application calls SQLDisconnect before it has freed all the statement
handles associated with the connection, DB2 CLI frees them after it successfully
disconnects from the database.

After a successful SQLDisconnect() call, the application can re-use hdbc to make
another SQLConnect() request.

Argument Description Use RPG data type C data type

hstmt Statement handle Input Integer(10) SQLHSTMT

fOption Mode of deallocation Input Integer(5) SQLSMALLINT

Argument Description Use RPG data type C data type

hdbc Connection handle Input Integer(10) SQLHDBC
Database access with RPG IV 367

The return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_ERROR, and SQL_INVALID_HANDLE.

6.5.7.16 SQLFreeConnect(): Free connection handle
SQLFreeConnect() invalidates and frees the connection handle. All DB2 CLI
resources associated with the connection handle are freed. SQLDisconnect()
must be called before calling this function. Either SQLFreeEnv() is called next to
continue terminating the application or SQLAllocHandle() to allocate a new
connection handle.

The C syntax is:

SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

Table 95 shows the parameters for this function.

Table 95. Parameters for the SQLFreeConnect function

If this function is called when a connection still exists, SQL_ERROR is returned,
and the connection handle remains valid.

Return codes are SQL_SUCCESS, SQL_ERROR and SQL_INVALID_HANDLE.

6.5.7.17 SQLFreeEnv(): Free environment handle
SQLFreeEnv() invalidates and frees the environment handle. All DB2 CLI
resources associated with the environment handle are freed.

SQLFreeConnect() must be called before calling this function.

This function is the last DB2 CLI step an application needs before terminating.

C syntax:

SQLRETURN SQLFreeEnv (SQLHENV henv);

Table 96 shows parameters for this function.

Table 96. Parameters for the SQLFreeEnv function

If this function is called when there is still a valid connection handle,
SQL_ERROR is returned, and the environment handle remains valid.

The return codes are SQL_SUCCESS, SQL_ERROR, and
SQL_INVALID_HANDLE.

6.5.8 Introduction to a CLI example
To illustrate the use of CLI interface, we modified the example that we used in
6.3.6, “Source code for SQLEMBED program” on page 336. Embedded SQL
statements are replaced with subprocedures that call CLI functions.

Argument Description Use RPG data type C data type

hdbc Connection handle Input Integer(10) SQLHDBC

Argument Description Use RPG data type C data type

henv Environment handle Input Integer(10) SQLHENV
368 Who Knew You Could Do That with RPG IV?

All subprocedure prototypes required for this example are made available
through the include file CLIPROTO. This file contains only selected functions that
we used in our example. It also contains definitions of constants for CLI return
codes, connect attributes, SQL data types, and other options used by CLI
functions.

6.5.8.1 Source code for the SQLCLI program
The logic of the program SQLCLI is the same as that of the programs that we
used in 6.3.6, “Source code for SQLEMBED program” on page 336, and 6.4.4, “A
stored procedure example” on page 342. We wanted to demonstrate that the
same functionality can be achieved by using either embedded SQL, stored
procedures, or DB2 Call Level Interface. The program uses the display file
DSPFIL1 to communicate with the end user.

To create this program, two steps are required:

1. Create the module using either PDM option 15 or CL command CRTRPGMOD

2. Create the program using either PDM option 26 or CL command CRTPGM with
the parameter BNDSRVPGM(QSYS/QSQCLI)

**
* Filename SQLCLI from DBSRC in RPGISCOOL
* Simple ILE RPG program SQLCLI to test CLI interface
*
* Examples of SELECT, INSERT, UPDATE, DELETE using CLI
*
* 1. Compile this source member as module SQLCLI (PDM Option=15)
*
* 2. Create program SQLCLI from module SQLCLI (PDM Option=26)
* with PROMPT(PF4) and BNDSRVPGM(QSYS/QSQCLI)
**
* Display file with subfile
FDspFil1 CF E WorkStn IndDS(DispInd)
F SFile(SflRec1:RecNum)
*--
D RecNum S 3 0
* Indicator data structure for display file indicators
*
D DispInd DS
D Exit 3 3N
D ListAllRec 4 4N
D InsertRec 5 5N
D UpdateRec 6 6N
D DeleteRec 7 7N
D Cancel 12 12N
D InvalidRec 55 55N
D ClearSfl 66 66N
* Include copy member with CLI prototypes and SQL variables
*
D/COPY RPGISCOOL/DBSRC,CLIPROTO 1
* Program variables used by CLI interface
*
D SQL_RC S 10I 0 2
D henv S 10I 0
D hdbc S 10I 0
D DBName S 18A
D DBNameP S * INZ(%ADDR(DBName))
D DBUser S 10A
D DBUserP S * INZ(%ADDR(DBUser))
D DBPwd S 10A
D DBPwdP S * INZ(%ADDR(DBPwd))
D ConnOpt S 5I 0
D IslLvl S 10I 0
D IslLvlP S * INZ(%ADDR(IslLvl))
D hstmt S 10I 0
D SQLStm S 128A
D SQLStmP S * INZ(%ADDR(SQLStm))
D SQLState S 6A
D SQLStateP S * INZ(%ADDR(SQLState))
Database access with RPG IV 369

D SQLCode S 10I 0
D SQLMsg S 71A
D SQLMsgP S * INZ(%ADDR(SQLMsg))
D MsgLenMax S 5I 0
D MsgLen S 5I 0
D ZeroBin S 128A INZ(*ALLX'00')
D ParamLen S 10I 0
D ParamDec S 5I 0
D pcbValue S 10I 0 INZ(0)
D Param1P S *
D Param2P S *
D Param3P S *
D Param4P S *
D Param5P S *
*--
* Begin of CLI itialization tasks
*
C Eval MsgLenMax=SQL_MAXMSG+1 3
* Allocate environment handle
C Eval SQL_RC=SQLAlcEnv(henv) 4
* Allocate connection handle
C Eval SQL_RC=SQLAlcCon(henv:hdbc) 5
* Set connection options
C Eval ConnOpt=SQL_ISOLVL 6
C Eval IslLvl=SQL_NONE
C Eval SQL_RC=SQLSetCnOp(hdbc:ConnOpt:IslLvlP)
* Connect to database
C Eval DBName='AS25' 7
C Eval DBName=(%TRIM(DBName))+Zerobin
C Eval DBUser='username'
C Eval DBUser=(%TRIM(DBUser))+Zerobin
C Eval DBPwd='password'
C Eval DBPwd=(%TRIM(DBPwd))+Zerobin
C Eval SQL_RC=SQLConnect(hdbc:DBNameP:SQL_NTS:
C DBUserP:SQL_NTS:DBPwdP:SQL_NTS)
* Check CLI Initialization
C If SQL_RC<>SQL_OK 8
C Eval SQL_RC=SQLError(henv:hdbc:hstmt:SQLStateP
C SQLCode:SQLMsgP:MsgLenMax:MsgLen)
C EndIf
* End of CLI itialization tasks
*--
C Exfmt DspRec1
* Loop begin
C DoW Not (Exit Or Cancel)
C Eval InvalidRec=*Off
C Select
* * * Insert record
C When InsertRec
C Clear DspDes
C Clear DspQty
C Clear DspPrc
C Clear DspDat
C Eval DspNum=PartNo
C Exfmt DspRec2
* Allocate statement handle for INSERT
C Eval SQL_RC=SQLAlcStmt(hdbc:hstmt) 9
* Bind value for 1. parameter marker PartNum
C Eval Param1P=%ADDR(DspNum) 10
C Eval ParamLen=5
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:1:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param1P:
C pcbValue)
* Bind value for 2. parameter marker PartDes
C Eval Param2P=%ADDR(DspDes) 10
C Eval ParamLen=25
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:2:SQL_CHAR:
C SQL_CHAR:ParamLen:ParamDec:Param2P:
C pcbValue)
* Bind value for 3. parameter marker PartQty
C Eval Param3P=%ADDR(DspQty) 10
C Eval ParamLen=5
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:3:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param3P:
C pcbValue)
370 Who Knew You Could Do That with RPG IV?

* Bind value for 4. parameter marker PartPrc
C Eval Param4P=%ADDR(DspPrc) 10
C Eval ParamLen=6
C Eval ParamDec=2
C Eval SQL_RC=SQLBindPar(hstmt:4:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param4P:
C pcbValue)
* Bind value for 5. parameter marker PartDat
C Eval Param5P=%ADDR(DspDat) 10
C Eval ParamLen=10
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:5:SQL_CHAR:
C SQL_DATE:ParamLen:ParamDec:Param5P:
C pcbValue)
* Define and execute INSERT statement
C Eval SQLStm='INSERT INTO PARTS '+ 11
C 'VALUES(?,?,?,?,?)'
C Eval SQLStm=(%TRIM(SQLStm))+Zerobin
C Eval SQL_RC=SQLExecDir(hstmt:SQLStmP:SQL_NTS)
* Check for duplicate record error
C If SQL_RC<>SQL_OK
C Eval InvalidRec=*On
C Endif
* Free statement handle for INSERT
C Eval SQL_RC=SQLFreeStm(hstmt:SQL_DROP) 14
* * * Display all records
C When ListAllRec
* Clear subfile
C Eval RecNum=0
C Eval ClearSfl=*On
C Write SflRec2
C Eval ClearSfl=*Off
* Allocate statement handle for SELECT all records
C Eval SQL_RC=SQLAlcStmt(hdbc:hstmt) 9
* Define and execute SELECT statement
C Eval SQLStm='SELECT * FROM PARTS ' + 11
C 'ORDER BY PARTNUM'
C Eval SQLStm=(%TRIM(SQLStm))+Zerobin
C Eval SQL_RC=SQLExecDir(hstmt:SQLStmP:SQL_NTS)
* Bind 1. column to program variable DspNum
C Eval Param1P=%ADDR(DspNum) 12
C Eval ParamLen=1280
C Eval SQL_RC=SQLBindCol(hstmt:1:SQL_DECIM:
C Param1P:ParamLen:pcbValue)
* Bind 2. column to program variable DspDes
C Eval Param2P=%ADDR(DspDes) 12
C Eval ParamLen=25
C Eval SQL_RC=SQLBindCol(hstmt:2:SQL_CHAR:
C Param2P:ParamLen:pcbValue)
* Bind 3. column to program variable DspQty
C Eval Param3P=%ADDR(DspQty) 12
C Eval ParamLen=1280
C Eval SQL_RC=SQLBindCol(hstmt:3:SQL_DECIM:
C Param3P:ParamLen:pcbValue)
* Bind 4. column to program variable DspPrc
C Eval Param4P=%ADDR(DspPrc) 12
C Eval ParamLen=1538
C Eval SQL_RC=SQLBindCol(hstmt:4:SQL_DECIM:
C Param4P:ParamLen:pcbValue)
* Bind 5. column to program variable DspDat
C Eval Param5P=%ADDR(DspDat) 12
C Eval ParamLen=10
C Eval SQL_RC=SQLBindCol(hstmt:5:SQL_DATE:
C Param5P:ParamLen:pcbValue)
* Execute Fetch in loop to read all records
C DoU SQL_RC=SQL_NODATA
C Eval SQL_RC=SQLFetch(hstmt) 13
C If SQL_RC=SQL_NODATA
C Leave
C EndIf
C Eval RecNum=RecNum+1
C Write SflRec1
C EndDo
* Free statement handle for SELECT all records
C Eval SQL_RC=SQLFreeStm(hstmt:SQL_DROP) 14
C Exfmt SflRec2
* * * Display single record
C Other
Database access with RPG IV 371

* Allocate statement handle for SELECT single record 9
C Eval SQL_RC=SQLAlcStmt(hdbc:hstmt)
* Bind value for 1. parameter marker PartNum
C Eval Param1P=%ADDR(PartNo) 10
C Eval ParamLen=5
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:1:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param1P:
C pcbValue)
* Define and execute SELECT statement
C Eval SQLStm='SELECT PARTDES, PARTQTY, ' + 11
C 'PARTPRC, PARTDAT FROM PARTS ' +
C 'WHERE PARTNUM=?'
C Eval SQLStm=(%TRIM(SQLStm))+Zerobin
C Eval SQL_RC=SQLExecDir(hstmt:SQLStmP:SQL_NTS)
* Bind 1. column to program variable DspDes
C Eval Param2P=%ADDR(DspDes) 12
C Eval ParamLen=25
C Eval SQL_RC=SQLBindCol(hstmt:1:SQL_CHAR:
C Param2P:ParamLen:pcbValue)
* Bind 2. column to program variable DspQty
C Eval Param3P=%ADDR(DspQty) 12
C Eval ParamLen=1280
C Eval SQL_RC=SQLBindCol(hstmt:2:SQL_DECIM:
C Param3P:ParamLen:pcbValue)
* Bind 3. column to program variable DspPrc
C Eval Param4P=%ADDR(DspPrc) 12
C Eval ParamLen=1538
C Eval SQL_RC=SQLBindCol(hstmt:3:SQL_DECIM:
C Param4P:ParamLen:pcbValue)
* Bind 4. column to program variable DspDat
C Eval Param5P=%ADDR(DspDat) 12
C Eval ParamLen=10
C Eval SQL_RC=SQLBindCol(hstmt:4:SQL_DATE:
C Param5P:ParamLen:pcbValue)
* Execute Fetch to read single record
C Eval SQL_RC=SQLFetch(hstmt) 13
C If SQL_RC=SQL_NODATA
C Eval InvalidRec=*On
C EndIf
* Free statement handle for SELECT single record
C Eval SQL_RC=SQLFreeStm(hstmt:SQL_DROP) 14
* Check for no record found error
C If Not InvalidRec
C Eval DspNum=PartNo
C Exfmt DspRec2
C Select
C When Exit Or Cancel
C Leave
* * * Update record
C When UpdateRec
* Allocate statement handle for UPDATE
C Eval SQL_RC=SQLAlcStmt(hdbc:hstmt) 9
* Bind value for 1. parameter marker PartDes
C Eval Param1P=%ADDR(DspDes) 10
C Eval ParamLen=25
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:1:SQL_CHAR:
C SQL_CHAR:ParamLen:ParamDec:Param1P:
C pcbValue)
* Bind value for 2. parameter marker PartQty
C Eval Param2P=%ADDR(DspQty) 10
C Eval ParamLen=5
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:2:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param2P:
C pcbValue)
* Bind value for 3. parameter marker PartPrc
C Eval Param3P=%ADDR(DspPrc) 10
C Eval ParamLen=6
C Eval ParamDec=2
C Eval SQL_RC=SQLBindPar(hstmt:3:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param3P:
C pcbValue)
* Bind value for 4. parameter marker PartDat
C Eval Param4P=%ADDR(DspDat) 10
C Eval ParamLen=10
C Eval ParamDec=0
372 Who Knew You Could Do That with RPG IV?

C Eval SQL_RC=SQLBindPar(hstmt:4:SQL_CHAR:
C SQL_DATE:ParamLen:ParamDec:Param4P:
C pcbValue)
* Bind value for 5. parameter marker PartNum
C Eval Param5P=%ADDR(DspNum) 10
C Eval ParamLen=5
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:5:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param5P:
C pcbValue)
* Define and execute UPDATE statement
C Eval SQLStm='UPDATE PARTS SET PARTDES=?, '+ 11
C 'PARTQTY=?, PARTPRC=?, PARTDAT=? '+
C 'WHERE PARTNUM=?'
C Eval SQLStm=(%TRIM(SQLStm))+Zerobin
C Eval SQL_RC=SQLExecDir(hstmt:SQLStmP:SQL_NTS)
* Free statement handle for UPDATE
C Eval SQL_RC=SQLFreeStm(hstmt:SQL_DROP) 14
* * * Delete record
C When DeleteRec
* Allocate statement handle for DELETE
C Eval SQL_RC=SQLAlcStmt(hdbc:hstmt) 9
* Bind value for 1. parameter marker PartNum
C Eval Param1P=%ADDR(PartNo) 10
C Eval ParamLen=5
C Eval ParamDec=0
C Eval SQL_RC=SQLBindPar(hstmt:1:SQL_DECIM:
C SQL_DECIM:ParamLen:ParamDec:Param1P:
C pcbValue)
* Define and execute DELETE statement 11
C Eval SQLStm='DELETE FROM PARTS WHERE PARTNUM=?
C Eval SQLStm=(%TRIM(SQLStm))+Zerobin
C Eval SQL_RC=SQLExecDir(hstmt:SQLStmP:SQL_NTS)
* Free statement handle for DELETE
C Eval SQL_RC=SQLFreeStm(hstmt:SQL_DROP) 14
C EndSl
C EndIf
C EndSl
C Exfmt DspRec1
* Loop end
C EndDo
*--
* Begin of CLI Termination tasks
* Disconnect from database
C Eval SQL_RC=SQLDisconn(hdbc) 15
* Free connection handle
C Eval SQL_RC=SQLFreeCon(hdbc) 16
* Free environment handle
C Eval SQL_RC=SQLFreeEnv(henv) 17
* End of CLI Termination tasks
*--
C Eval *INLR = *On

SQLCLI program notes
1 Copy the source member CLIPROTO to include all required subprocedure

prototypes.

2 Variables used by different CLI functions.

3 To avoid truncation of the error message, declare a message buffer length as
SQL_MAXMSG + 1. The message text will never be longer than this.

4 The function SQLAllocEnv() allocates an environment handle and associated
resources. This function must be called before any other CLI function.

5 The function SQLAllocConnect() allocates a connection handle and
associated resources within the environment identified by the input
environment handle.

6 The function SQLSetConnectOption() sets connection attributes for a
particular connection. With SQL_NONE, we define that commitment control
will not be used.
Database access with RPG IV 373

7 The function SQLConnect() establishes a connection to the target database,
which must already be defined on the system for the connect to work. You can
use the Work with Relational Database Directory Entries (WRKRDBDIRE)
command to determine which databases have been defined already and to
optionally define additional one.

8 An example how to check the success of executed CLI function. SQLError()
returns the diagnostic information associated with the most recently called CLI
function for a particular statement, connection, or environment handle.

9 The function SQLAllocStmt() allocates a new statement handle and associates
it with the connection specified by the connection handle. In our example, we
use only one statement handle which is allocated to different SQL statements.
Another possibility would be to allocate a separate handle for each SQL
statement.

10 The function SQLBindParam() binds a parameter marker to a program
variable. A parameter marker is represented by a "?" (question mark)
character in an SQL statement and is used to indicate a position in the
statement where an application supplied value is to be substituted when the
statement is executed. Parameter markers are referred to by number and are
numbered sequentially from left to right, starting at 1.

11 An SQL statement string, including parameter markers, is defined in the
variable SQLStm, which is then passed to the function SQLExecDirect() to be
executed. All parameters must be bound before calling.

12 The function SQLBindCol() binds columns in a result set to program variables
for all data types. Data is transferred from the DBMS to the application when
SQLFetch() is called.

13 When the executed SQL statement is SELECT, it is necessary to run the
function SQLFetch(), which advances the cursor to the next row of the result
set and retrieves any bound columns.

14 The function SQLFreeStmt() ends processing on the statement referenced by
the statement handle. It is used to close a cursor, reset parameters, and
unbind columns from variables.

15 The function SQLDisconnect() closes the connection associated with the
database connection handle. This is part of the termination process.

16 The function SQLFreeConnect() is called next to free the connection handle.
All CLI resources associated with the connection handle are freed.

17 The function SQLFreeEnv() is the last CLI step an application needs before
terminating. It invalidates and frees the environment handle.

6.5.8.2 Source code for prototypes CLIPROTO
This source member is copied into the previous SQLCLI program. It contains
subprocedure prototypes for CLI functions used by this program.

* Filename CLIPROTO from DBSRC in RPGISCOOL
* Function Prototype ALLOCATE ENVIRONMENT HANDLE
*
* SQLRETURN SQLAllocEnv (SQLHENV *phenv);

* Return value = 0 (OK) or -1 (error)
DSQLAlcEnv PR 10I 0 ExtProc('SQLAllocEnv')
* Environmental handle
D 10I 0

374 Who Knew You Could Do That with RPG IV?

* Function Prototype ALLOCATE CONNECTION HANDLE
*
* SQLRETURN SQLAllocConnect (SQLHENV henv,
* SQLHDBC *phdbc);

* Return value = 0 (OK) or -1 (error) or -2 (invalid handle)
DSQLAlcCon PR 10I 0 ExtProc('SQLAllocConnect')
* Environmental handle
D 10I 0 VALUE
* Connection handle
D 10I 0

* Function Prototype CONNECTION TO A DATABASE
*
* SQLRETURN SQLConnect (SQLHDBC hdbc,
* SQLCHAR *szDSN,
* SQLSMALLINT cbDSN,
* SQLCHAR *szUID,
* SQLSMALLINT cbUID,
* SQLCHAR *szAuthStr,
* SQLSMALLINT cbAuthStr);

* Return value = 0 or 1 (OK) or -1 (error) or -2 (invalid handle)
DSQLConnect PR 10I 0 ExtProc('SQLConnect')
* Connection handle
D 10I 0 VALUE
* Pointer of the field containing the name of the database
D * VALUE
* Length of the name of the database
D 5I 0 VALUE
* Pointer of the field containing the user identification
D * VALUE
* Length of the user identification
D 5I 0 VALUE
* Pointer of the field containing the password
D * VALUE
* Length of the password
D 5I 0 VALUE

* Function Prototype SET CONNECTION OPTION
*
* SQLRETURN SQLSetConnectOption (SQLHDBC hdbc,
* SQLSMALLINT fOption,
* SQLPOINTER vParam);

* Return value = 0 or 1 (OK) or -1 (error) or -2 (invalid handle)
DSQLSetCnOp PR 10I 0 ExtProc('SQLSetConnectOption')
* Connection handle
D 10I 0 VALUE
* Connect option
D 5I 0 VALUE
* Pointer to the field containing the value of the connect option
D * VALUE

* Function Prototype ALLOCATE STATEMENT HANDLE
*
* SQLRETURN SQLAllocStmt (SQLHDBC hdbc,
* SQLHSTMT *phstmt);

* Return value = 0 (OK) or -1 (error) or -2 (invalid handle)
DSQLAlcStmt PR 10I 0 ExtProc('SQLAllocStmt')
* Connection handle
D 10I 0 VALUE
* Handle of the SQL statement
D 10I 0

* Function Prototype PREPARE SQL STATEMENT
*
* SQLRETURN SQLPrepare (SQLHSTMT hstmt,
* SQLCHAR *szSqlStr,
* SQLINTEGER cbSqlStr);

* Return value = 0 or 1 (OK) or -1 (error) or -2 (invalid handle)
DSQLPrepare PR 10I 0 ExtProc('SQLPrepare')
* Handle of the SQL statement
D 10I 0 VALUE
* Pointer to the field containing the SQL statement
D * VALUE
Database access with RPG IV 375

* Length of the SQL statement
D 5I 0 VALUE

* Function Prototype BIND BUFFER TO A PARAMETER MARKER
*
* SQLRETURN SQLBindParam(SQLHSTMT hstmt,
* SQLSMALLINT iparm,
* SQLSMALLINT iType,
* SQLSMALLINT pType,
* SQLINTEGER pLen,
* SQLSMALLINT pScale,
* SQLPOINTER pData,
* SQLINTEGER *pcbValue);

* Return value = 0 or 1 (OK) or -1 (error) or -2 (invalid handle)
DSQLBindPar PR 10I 0 ExtProc('SQLBindParam')
* Handle of the SQL statement
D 10I 0 VALUE
* Sequential parameter marker number
D 5I 0 VALUE
* Data type of the parameter (application)
D 5I 0 VALUE
* Data type of the parameter (SQL)
D 5I 0 VALUE
* Length of the parameter
D 10I 0 VALUE
* Decimal number of the parameter
D 5I 0 VALUE
* Pointer to the buffer containing the parameter
D * VALUE
* Length of the parameter (se alfanumerico) or 0
D 10I 0

* Function Prototype BIND A COLUMN TO APPLICATION VARIABLE
*
* SQLRETURN SQLBindCol (SQLHSTMT hstmt,
* SQLSMALLINT icol,
* SQLSMALLINT fCType,
* SQLPOINTER rgbValue,
* SQLINTEGER cbValueMax,
* SQLINTEGER *pcbValue);

* Return value = 0 (OK) or -1 (error) or -2 (invalid handle)
DSQLBindCol PR 10I 0 ExtProc('SQLBindCol')
* Handle of the SQL statement
D 10I 0 VALUE
* Sequential parameter marker number
D 5I 0 VALUE
* Data type of the parameter (application)
D 5I 0 VALUE
* Pointer to the program variable
D * VALUE
* Length of the variable
D 10I 0 VALUE
* Length of the parameter
D 10I 0

* Function Prototype EXECUTION STATEMENT PREPARED USING SQLPREPARE
*
* SQLRETURN SQLExecute (SQLHSTMT hstmt);

* Return value = 0 or 1 (OK) or 100 (no data found)
* or -1 (error) or -2 (invalid handle)
DSQLExecute PR 10I 0 ExtProc('SQLExecute')
* Handle of the SQL statement
D 10I 0 VALUE

* Function Prototype EXECUTION DIRECT SQL STATEMENT
*
* SQLRETURN SQLExecDirect (SQLHSTMT hstmt,
* SQLCHAR *szSqlStr,
* SQLINTEGER cbSqlStr);

* Return value = 0 or 1 (OK) or 100 (no data found)
* or -1 (error) or -2 (invalid handle)
DSQLExecDir PR 10I 0 ExtProc('SQLExecDirect')
* Handle of the SQL statement
D 10I 0 VALUE
376 Who Knew You Could Do That with RPG IV?

* Pointer of the field containing the SQL statement
D * VALUE
* Length of the SQL statement
D 5I 0 VALUE

* Function Prototype FETCH NEXT ROW
*
* SQLRETURN SQLFetch (SQLHSTMT hstmt)

* Return value = 0 or 1 (OK) or 100 (no data found)
* or -1 (error) or -2 (invalid handle)
DSQLFetch PR 10I 0 ExtProc('SQLFetch')
* Statement handle
D 10I 0 VALUE

* Function Prototype LAST TRANSACTION
*
* SQLRETURN SQLTransact (SQLHENV henv,
* SQLHDBC hdbc,
* SQLSMALLINT fType);

* Return value = 0 (OK) or -1 (error) or -2 (invalid handle)
DSQLTrans PR 10I 0 ExtProc('SQLTransact')
* Environmental handle
D 10I 0 VALUE
* Connection handle
D 10I 0 VALUE
* Action of last transaction: 0=COMMIT, 1=ROLLBACK
D 5I 0 VALUE

* Function Prototype RETRIEVE ERROR INFORMATION
*
* SQLRETURN SQLError (SQLHENV henv,
* SQLHDBC hdbc,
* SQLHSTMT hstmt,
* SQLCHAR *szSqlState,
* SQLINTEGER *pfNativeError,
* SQLCHAR *szErrorMsg,
* SQLSMALLINT cbErrorMsgMax,
* SQLSMALLINT *pcbErrorMsg);

* Return value = 0 or 1 (OK) or 100 (no data found)
* or -1 (error) or -2 (invalid handle)
DSQLError PR 10I 0 ExtProc('SQLError')
* Environmental handle
D 10I 0 VALUE
* Connection handle
D 10I 0 VALUE
* Handle of the SQL statement
D 10I 0 VALUE
* Pointer to the field that must contain the SQLSTATE
D * VALUE
* SQLCODE returned from the database
D 10I 0
* Pointer to the field that must contain the error message
D * VALUE
* Maximum length of the error message
D 5I 0 VALUE
* Total length of the error message
D 5I 0

* Function Prototype DEALLOCATION HANDLE OF THE SQL STATEMENT
*
* SQLRETURN SQLFreeStmt (SQLHSTMT hstmt,
* SQLSMALLINT fOption)

* Return value = 0 or 1 (OK) or -1 (error) or -2 (invalid handle)
DSQLFreeStm PR 10I 0 ExtProc('SQLFreeStmt')
* Handle of the SQL statement
D 10I 0 VALUE
* Mode of deallocation
D 5I 0 VALUE

* Function Prototype DISCONNECTION OF A DATABASE
*
* SQLRETURN SQLDisconnect (SQLHDBC hdbc);
*

Database access with RPG IV 377

* Return value = 0 or 1 (OK) or -1 (error) or -2 (invalid handle)
DSQLDisconn PR 10I 0 ExtProc('SQLDisconnect')
* Connection handle
D 10I 0 VALUE

* Function Prototype CONNECTION DEALLOCATION HANDLE
*
* SQLRETURN SQLFreeConnect (SQLHDBC hdbc);

* Return value = 0 (OK) or -1 (error) or -2 (invalid handle)
DSQLFreeCon PR 10I 0 ExtProc('SQLFreeConnect')
* Connection handle
D 10I 0 VALUE

* Function Prototype DEALLOCATION ENVIRONMENTAL HANDLE
*
* SQLRETURN SQLFreeEnv (SQLHENV henv);

* Return value = 0 (OK) or -1 (error) or -2 (invalid handle)
DSQLFreeEnv PR 10I 0 ExtProc('SQLFreeEnv')
* Environmental handle
D 10I 0 VALUE

* RETCODE values

DSQL_OK C CONST(0)
DSQL_OK_INF C CONST(1)
DSQL_NODATA C CONST(100)
DSQL_NEEDAT C CONST(99)
DSQL_ERROR C CONST(-1)
DSQL_INVHAN C CONST(-2)

* Valid values for connect attribute

DSQL_AUTIPD C CONST(10001)
DSQL_ISOLVL C CONST(0)
DSQL_NONE C CONST(1)
DSQL_CHANGE C CONST(2)
DSQL_CS C CONST(3)
DSQL_ALL C CONST(4)
DSQL_RR C CONST(5)

* SQLFreeStmt option values

DSQL_CLOSE C CONST(0)
DSQL_DROP C CONST(1)
DSQL_UNBIND C CONST(2)
DSQL_RESET C CONST(3)

* SQLTransact option values

DSQL_COMMIT C CONST(0)
DSQL_ROLLBK C CONST(1)

* Standard SQL data types

DSQL_CHAR C CONST(1)
DSQL_NUMER C CONST(2)
DSQL_DECIM C CONST(3)
DSQL_INTEG C CONST(4)
DSQL_SMINT C CONST(5)
DSQL_FLOAT C CONST(6)
DSQL_REAL C CONST(7)
DSQL_DOUBLE C CONST(8)
DSQL_DATTIM C CONST(9)
DSQL_VARCH C CONST(12)
DSQL_GRAPH C CONST(95)
DSQL_VARGR C CONST(96)
DSQL_DATE C CONST(91)
DSQL_TIME C CONST(92)
DSQL_TIMEST C CONST(93)
DSQL_CD_DAT C CONST(1)
DSQL_CD_TIM C CONST(2)
DSQL_CD_TST C CONST(3)
DSQL_ALLTYP C CONST(0)

* C data type to SQL data type mapping

378 Who Knew You Could Do That with RPG IV?

DSQL_C_CHAR C CONST(1)
DSQL_C_LONG C CONST(4)
DSQL_C_SHRT C CONST(5)
DSQL_C_FLOT C CONST(7)
DSQL_C_DOUB C CONST(8)
DSQL_C_DTTM C CONST(9)

* Generally useful constants

* Null Terminated String
DSQL_NTS C CONST(-3)
DSQL_MAXMSG C CONST(70)
DSQL_SQLSTS C CONST(5)

6.6 Trigger programs

A trigger is a set of actions that are run automatically when a specified change
operation is performed on a specified physical database file. This change
operation can be an insert, update, or delete performed by an application
program.

Triggers can be used for different purposes:

• Enforce business rules
• Validate input data
• Generate a unique value for a newly inserted row on a different file
• Write to other files for audit trail purposes
• Query from other files for cross-referencing purposes
• Access system functions (for example, print an exception message when a

rule is violated)
• Replicate data to different files to achieve data consistency

Using triggers, customers can realize the following benefits:

• Faster application development

Because triggers are stored in the database, the actions performed by triggers
do not have to be coded in each database application.

• Global enforcement of business rules

A trigger is defined once and then reused for any application using the
database.

• Easier maintenance

If a business policy changes, it is necessary to change only the corresponding
trigger program instead of each application program.

• Improve performance in client/sever environment

All rules are run in the server before returning the result.

You can try this example by compiling the code from this section on your
AS/400 system. Use the following commands to create the program:

CRTRPGMOD MODULE(RPGISCOOL/SQLCLI) SRCFILE(RPGISCOOL/DBSRC)
CRTPGM PGM(RPGISCOOL/SQLCLI) BNDSRVPGM(QSQCLI)

To run the program, enter the following command:

CALL PGM(RPGISCOOL/SQLCLI)

Try it yourself
Database access with RPG IV 379

To use trigger support on the AS/400 system, you must create a trigger program
and add it to a physical file.

6.6.1 Adding a trigger program to a file
The Add Physical File Trigger (ADDPFTRG) command is used to associate a
trigger program with a specific physical file. Once the association exists, the
system calls this trigger program when a change operation is initiated against the
physical file, a member of the physical file, and any logical file created over the
physical file.

You can associate a maximum of six triggers to one physical file, one for each of
the following events:

• Before an insert
• After an insert
• Before a delete
• After a delete
• Before an update
• After an update

Each insert, delete, or update event can call a trigger before the change
operation occurs and after it occurs. This allows the before trigger to be used to
validate the database rules. If the validation fails, the trigger signals an exception
informing the system that an error occurred in the trigger program. The system
then informs the application that the operation cannot be proceeded due to an
error.

To remove the association between trigger program and a file, we use the
Remove Physical File Trigger (RMVPFTRG) command. Once you remove the
association, no action is taken if a change is made to the physical file.

The Display File Description (DSPFD) command provides a list of the triggers
associated with a file. Specify TYPE(*TRG) or TYPE(*ALL) to get this list.

6.6.2 Creating a trigger program
To provide desired trigger support, a trigger program must be written in any
high-level language, SQL or CL. We use, of course, RPG IV.

The change operation passes two parameters to the trigger program. From these
inputs, the trigger program can reference a copy of the original and new records.
The trigger program must be coded to accept these parameters.

Trigger program input parameters are:

• Trigger buffer, which contains the information about the current change
operation that invoked the trigger program

• Trigger buffer length
380 Who Knew You Could Do That with RPG IV?

6.6.2.1 Trigger buffer field descriptions
The trigger buffer has two logical sections, a static and a variable:

• The static section contains:

– A trigger template that contains the physical file name, member name,
trigger event, trigger time, commit lock level, and CCSID of the current
change record and relative record number.

– Offsets and lengths of the record areas and null byte maps.

– This section occupies the first 96 bytes.

• The variable section contains:

– Areas for the old record
– Old null byte map
– New record
– New null byte map

Table 97 shows the content of a trigger buffer.

Table 97. Trigger buffer content

From To Type Field description

1 10 Char(10) Physical file name

11 20 Char(10) Physical file library name

21 30 Char(10) Physical file member name

31 31 Char(1) Trigger event
’1’=Insert, ’2’=Delete, ’3’=Update

32 32 Char(1) Trigger time
’1’=After, ’2’=Before

33 33 Char(1) Commit lock level
’0’=*None, ’1’=*Chg, ’2’=*CS, ’3’=*All

34 36 Char(3) Reserved

37 40 Integer(10) CCSID of data

41 48 Char(8) Reserved

49 52 Integer(10) Original record offset

53 56 Integer(10) Original record length

57 60 Integer(10) Original record null byte map offset

61 64 Integer(10) Original record null byte map length

65 68 Integer(10) New record offset

69 72 Integer(10) New record length

73 76 Integer(10) New record null byte map offset

77 80 Integer(10) New record null byte map length

81 96 Char(16) Reserved

97 * Char(*) Original record

* * Char(*) Original record null byte map
Database access with RPG IV 381

The record null byte map contains the Null value information for each field of the
record. Each byte represents one field. The possible values for each byte are:

0 Not Null
1 Null

6.6.2.2 Coding snippet TRGBUF example of input parameters
To define input parameters for a trigger program, you can copy the source
member TRGBUF from the file QRPGLESRC in library QSYSINC. But, if you
want to give longer and meaningful names to these fields, you have to define
input data structure in your program.

The following code snippet illustrates how trigger program input parameters can
be defined in an RPG IV program:

*
* Trigger buffer
*
D TrgBuffer DS 2
D FileName 10
D LibName 10
D MbrName 10
D TrgEvent 1
D TrgTime 1
D CmtLevel 1
D Reserved1 3
D CCSID 10I 0
D Reserved2 8
D OrgRecOffset 10I 0
D OrgRecLength 10I 0
D OrgRecNulOff 10I 0
D OrgRecNulLen 10I 0
D NewRecOffset 10I 0
D NewRecLength 10I 0
D NewRecNulOff 10I 0
D NewRecNulLen 10I 0
D Reserved3 16
D OrgRecord 47
D OrgRecordNul 5
D NewRecord 47
D NewRecordNul 5
*
* Overlay fields for original record
*
D PartNumOrg 5S 0 Overlay(OrgRecord) 4
D PartDesOrg 25 Overlay(OrgRecord:*Next)
D PartQtyOrg 5P 0 Overlay(OrgRecord:*Next)
D PartPrcOrg 6P 2 Overlay(OrgRecord:*Next)
D PartDatOrg D Overlay(OrgRecord:*Next)
*
* Overlay fields for new record
*
D PartNumNew 5S 0 Overlay(NewRecord) 4
D PartDesNew 25 Overlay(NewRecord:*Next)
D PartQtyNew 5P 0 Overlay(NewRecord:*Next)
D PartPrcNew 6P 2 Overlay(NewRecord:*Next)
D PartDatNew D Overlay(NewRecord:*Next)
*
* Trigger buffer length
*
D TrgBufLen S 10I 0 3
*
* Entry parameter list for trigger program
*
C *Entry Plist 1

* * Char(*) New record

* * Char(*) New record null byte map

From To Type Field description
382 Who Knew You Could Do That with RPG IV?

C Parm TrgBuffer
C Parm TrgBufLen
* 5
C Eval Date=%Subst(TrgBuffer:OrgRecOffset+38:10)

TRGBUF snippet notes
1 The entry parameter list defines two parameters: the trigger buffer and trigger

buffer length.

2 The trigger buffer is defined as a data structure.

3 The trigger buffer length is a standalone field, type integer.

4 Using the Overlay keyword, we can redefine original and new record fields in
the trigger buffer to access particular fields from those records.

5 Record offset in combination with %SUBST built-in function can be also used
to access particular fields from a trigger buffer.

6.6.2.3 Trigger program coding guidelines
Observe these guidelines for trigger program coding:

• The trigger program is called for each row that is changed in the physical file.

• The trigger program and application program may run in the same or different
activation groups. We recommend that the trigger program be compiled with
ACTGRP(*CALLER) to achieve consistency between the trigger program and
the application program.

• A commit lock level of the application program is passed to the trigger
program. We recommend that the trigger program run under the same lock
level as the application program.

• A trigger program can call other programs or can be nested so that a
statement in a trigger program causes the calling of another trigger program.
In addition, a trigger program may be called recursively by itself. The
maximum trigger nested level for insert and update is 200.

• When the trigger program runs under commitment control, the following
situations results in an error.

– Any update of the same record that was already changed by the change
operation or by an operation in the trigger program.

– Conflicting operations on the same record within one change operation.
For example, a record is inserted by the change operation and then deleted
by the trigger program.

• The Allow Repeated Change ALWREPCHG(*YES) parameter on the Add
Physical File Trigger (ADDPFTRG) command also affects trigger programs
defined to be called before insert and update database operations. If the
trigger program updates the new record in the trigger buffer and
ALWREPCHG(*YES) is specified, the modified new record image is used for
the actual insert or update operation on the associated physical file. This
option can be helpful in trigger programs that are designed for data validation
and data correction.

6.6.2.4 Trigger program error messages
If a failure occurs while the trigger program is running, it should send an
appropriate escape message before exiting. Otherwise, the application assumes
the trigger program ran successfully. The message can be the original message
received from the system or a message created by the programmer.
Database access with RPG IV 383

6.7 Commitment control

Commitment control is a function that allows you to define and process a group of
changes to the database files or tables as a logical unit of work.

A logical unit of work (LUW) is defined as a group of individual changes to objects
on the system that should appear as a single atomic change to the user. End
users and application programmers call this a transaction.

Commitment control ensures that either the entire group of individual changes
occur on all systems that participate or that none of the changes occur.

The typical example of changes that can be grouped together is the transfer of
funds from a savings to a checking account. To the user, this is a single
transaction. However, more than one change occurs to the database because
both savings and checking accounts are updated.

Commitment control can be used to design an application so that it can be
restarted if a job, an activation group within a job, or the system ends abnormally.
The application can be started again with assurance that no partial updates are in
the database due to incomplete logical units of work from a prior failure.

6.7.1 File journaling
Commitment control requires that a database file or table must be journaled
before it can be opened for output under commitment control. A file does not
need to be journaled to open it for input only under commitment control.

Commitment control uses a journal to write entries that identify the begin and end
of commitment control, start commit cycle, or a commit and rollback operation. It
also uses record before images when rollback operation is performed.

If only the after images are being journaled for a database file when that file is
opened under commitment control, the system automatically starts journaling
both the before and after images. The before images are written only for changes
to the file that occur under commitment control.

When using SQL environment, journal and journal receiver are automatically
created as a part of the SQL collection. Any SQL table created inside the SQL
collection is automatically journaled.

If the database file is created using a native interface (CRTPF), you must take
care to activate journaling. Three steps are required:

1. Use the Create Journal Receiver (CRTJRNRCV) command to create a journal
receiver object.

2. Use the Create Journal (CRTJRN) command to create a journal object and
associate it with the journal receiver.

3. Use the Start Journal Physical File (STRJRNPF) command to start journaling for
selected files.

6.7.2 Using commitment control with RPG native file operations
To use commitment control in an ILE RPG program with native file operations,
perform the following tasks:
384 Who Knew You Could Do That with RPG IV?

1. On the system, follow these steps:

a. Prepare for using commitment control to start journaling for all files that will
be used under commitment control.

b. Notify the system when to start and end commitment control. Use the CL
commands Start Commitment Control (STRCMTCTL) and End Commitment
Control (ENDCMTCTL).

2. In the ILE RPG program, follow these steps:

a. Specify commitment control (COMMIT) on the file-description specifications of
the files you want under commitment control.

b. Use the COMMIT operation code to apply a group of changes to files under
commitment control, or use the ROLBK (Roll Back) operation code to
eliminate the pending group of changes to files under commitment control.

6.7.2.1 Starting commitment control
With the CL command Start Commitment Control (STRCMTCTL), you notify the
system that you want the commitment control to be started with the following
options:

• The Lock level parameter (LCKLVL) defines the level at which records are
locked under commitment control.

*CHG Every record read for an update is locked. If a record is changed,
added, or deleted, that record remains locked until the transaction
is committed or rolled back. Records that are accessed for update
operations, but are released without being changed, are unlocked.

*CS Every record accessed is locked. A record that is read, but not
changed or deleted, is unlocked when a different record is read.
Records that are changed, added, or deleted are locked until the
transaction is committed or rolled back.

*ALL Every record accessed is locked until the transaction is committed
or rolled back.

• The Commitment definition scope parameter (CMTSCOPE) specifies the
scope for the commitment definition, either the activation group level or the job
level.

• Notify object specifies the name and type of object (file, data area, or
message queue) where notification is sent in the event of an abnormal job
end. This information relates to the last successfully completed group of
changes and is used to restart the job.

6.7.2.2 Commit and rollback operations
To indicate that a database file is to run under commitment control, enter the
keyword COMMIT in the keyword field of the file description specification.

When a program specifies commitment control for a file, the specification applies
only to the input and output operations made by this program for this file. Other
programs that use the same file without commitment control are not affected.

The COMMIT keyword has an optional parameter, which allows conditional use of
commitment control. The ILE RPG compiler implicitly defines a one-byte
character field with the same name as the one specified as the parameter. If the
parameter is set to 1, the file will run under commitment control.
Database access with RPG IV 385

The COMMIT keyword parameter must be set prior to opening the file. You can
do so by passing in a value when you call the program or by explicitly setting it to
"1" in the program.

On a C specification, you can use two operation codes at the end of related group
of changes to denote the end of transaction:

• The COMMIT operation tells the system that a group of changes to the files
under commitment control is completed.

• The ROLBK operation eliminates the current group of changes to the files
under commitment control.

If the system fails, it implicitly issues a ROLBK operation. You can check the
identity of the last successfully completed group of changes using the label you
specify in factor 1 of the COMMIT operation code and the notify-object you
specify on the Start Commitment Control (STRCMTCTL) command.

The following code snippet illustrates the use of commitment control in a program
with native file operations:

FParts UF E K Disk Commit(ComitFlag)
FTrans UF E K Disk Commit(ComitFlag)
*
* If ComitFlag = '1' the files are opened under commitment control,
* otherwise they are not.
*
C *Entry Plist
C Parm ComitFlag
*
* Use the COMMIT operation to complete a group of operations if
* they were successful or rollback the changes if they were not
* successful. You only issue the COMIT or ROLBK if the files
* were opened for commitment control (ie. COMITFLAG = '1')
*
C Update(E) PartR
C Update(E) TranR
*
C If ComitFlag = '1'
*
C If %Error
C Rolbk
C Else
C Commit
C EndIf
*
C EndIf

6.7.3 Using commitment control with embedded SQL
SQL provides similar functions to support commitment control using embedded
the SQL statements COMMIT and ROLLBACK.

6.7.3.1 Starting commitment control
The commitment control environment for ILE RPG programs with embedded SQL
statements is started automatically. DB2 for AS/400 implicitly calls the CL
command Start Commitment Control (STRCMTCTL) and specifies the requested
parameters NFYOBJ(*NONE) and CMTSCOPE(*ACTGRP). The LCKLVL
parameter is specified according to the lock level on the COMMIT parameter of
the Create SQL ILE RPG Object (CRTSQLRPGI) command (used to create the
program).
386 Who Knew You Could Do That with RPG IV?

SQL supports the following lock levels:

*NONE or *NC Specifies that commitment control is not used. Uncommitted
changes in other jobs can be seen.

*CHG or *UR The updated, deleted, and inserted rows are locked until the
end of the transaction. Uncommitted changes in other jobs can
be seen.

*CS The updated, deleted, and inserted rows are locked until the
end of the transaction. A row that is selected, but not updated,
is locked until the next row is selected. Uncommitted changes
in other jobs cannot be seen.

*ALL or *RS The selected, updated, deleted, and inserted rows are locked
until the end of the transaction. Uncommitted changes in other
jobs cannot be seen.

*RR The selected, updated, deleted, and inserted rows are locked
until the end of the transaction. Uncommitted changes in other
jobs cannot be seen. All tables referred to in SELECT,
UPDATE, DELETE, and INSERT statements are locked
exclusively until the end of the transaction.

6.7.3.2 Commit and rollback statements
In the program, we can either commit all transaction changes the using
embedded SQL statement COMMIT or back out of these changes using the
ROLLBACK statement.

Both statements have an optional HOLD parameter, which can be useful when
using the cursor technique to fetch rows from result table. If HOLD is specified,
currently open cursors are not closed, and all resources acquired during the unit
of work are held. Locks on specific rows and objects implicitly acquired during the
unit of work are released.

If HOLD is omitted, cursors opened within this unit of work are closed unless the
cursors were declared with the WITH HOLD clause.

6.7.4 Using commitment control with the CLI interface
The CLI interface provides support for commitment control by calling specific CLI
functions, described earlier in 6.5, “Call Level Interface” on page 348.

6.7.4.1 Starting commitment control
Function SQLSetConnectionOption() sets connection attributes including
transaction isolation level for commitment control. This function should be
executed in the initialization phase of our CLI program to define the requested
level of commitment control. The following connect options are supported:

1 SQL_COMMIT_NONE
2 SQL_COMMIT_CHG
3 SQL_COMMIT_CS
4 SQL_COMMIT_ALL
5 SQL_COMMIT_RR

This code snippet contains an example of calling SQLSetConnectionOption() to
define the change isolation level for commitment control:
Database access with RPG IV 387

* Variable definitions
D ConnOpt S 5I 0
D IslLvl S 10I 0
D IslLvlP S * INZ(%ADDR(IslLvl))
* Set connection options
C Eval ConnOpt=SQL_ATTR_COMMIT
C Eval IslLvl=SQL_COMMIT_CHG
C Eval SQL_RC=SQLSetCnOp(hdbc:ConnOpt:IslLvlP)

SQL_ATTR_COMMIT is a numeric constant with a value of 0 and signals to CLI
that we want to define option for commitment control.

SQL_COMMIT_CHG is another numeric constant with a value of 2 and defines
the change isolation level.

6.7.4.2 The commit and rollback function
Another function, SQLTransact(), should be used to perform commit or rollback
operations at the end of transaction. All changes to the database performed on
the connection since connect time or the previous call to SQLTransact() are
committed or rolled back.

The following code snippet shows how to invoke this function:

C Eval SQL_RC=SQLTrans(henv:hdbc:SQL_COMMIT)

The numeric constant SQL_COMMIT with value 0 defines commit operation.
Another constant SQL_ROLLBACK with value 1 represents rollback operation.

6.8 More information about database access with RPG IV

Where should you go for more information and samples of RPG IV applications
integrating with DB2 for OS/400?

Consider the following IBM manuals for reference:

• DB2 for OS/400 SQL Programming, SC41-4611
• DB2 for OS/400 SQL Reference, SC41-4612
• DB2 for OS/400 SQL Call Level Interface, SC41-5806

Visit the following Web sites for programming samples and Frequently Asked
Questions (FAQs) and their answers:

• http://www.as400.ibm.com

• http://www.as400.ibm.com/db2/clifaq.htm

• http://www.as400.ibm.com/tstudio/db2_400/cli_rpg/rpg_intro.htm

• http://www.as400.ibm.com/tstudio/tech_ref/cli/cli1.htm
388 Who Knew You Could Do That with RPG IV?

Chapter 7. A modern tool for a modern language: CODE/400

While modernizing your programming language and style, as suggested in other
parts of this book, perhaps it is also time to consider modernizing your
development toolset. You may still be using mostly host-based tools, such as
PDM and SEU, to enter and compile your source code. Instead, consider using a
more modern and productive edit and compile platform based on a graphical
workstation.

There are multiple workstation editors customized for AS/400 and RPG
environments. As a way of illustrating the advantages to be gained from these
types of tools, we consider the workstation development platform from IBM,
called CODE/400 (CoOperative Development Environment).

CODE/400 is a toolset that contains multiple types of tools:

• Language-sensitive editor
• Code verifier
• DDS designer
• Debugger
• Project organizer

In this chapter, we concentrate primarily on the editor and verifier that are part of
CODE/400, with a quick look at the DDS designer. The basic text-based tools for
working with, editing, and compiling code and designing screens and reports
(SEU, PDM, SDA and RLU) have not had significant enhancements in several
releases. However, the workstation-based CODE/400 toolset continues to see
significant enhancements regularly.

7.1 The CODE/400 editor

The editor that is part of the CODE/400 toolset is called Live Parsing EXtensible
(LPEX) editor. It can be extended by adding user-written macros. However, many
AS/400 programmers find the CODE/400 editor a productivity boon just as it
comes, without user-written extensions.

Because the CODE/400 editor is workstation based, it takes advantage of
workstation features not readily available to text-based editors, such as SEU. For
example, a feature called token highlighting allows the CODE/400 editor to
highlight and emphasize the different parts of each RPG specification by color
coding the parts. For example, on the C specification, Factor 1 and Result may
appear in gray, while the operation code is in red and Factor 2 is in black.

Perhaps the part of token highlighting that is most helpful is the fact that
commented lines of code are in a different color from the rest of the code and,
therefore, stand out immediately as comments. This can save hours of debugging
time in cases where otherwise valid lines of code have been commented out, but,
for example, the programmer that is debugging the code has not noticed the "*" in
column 7.

Figure 42 on page 390 illustrates the color variation of the token highlighting.
Notice how the code stands out and the comments fade.
© Copyright IBM Corp. 2000 389

Figure 42. A sample CODE/400 editor window

Figure 42 shows RPG/400 code, and not RPG IV code. One reason this code was
chosen for the first example is to illustrate that you can begin to use CODE/400
even if you have not yet moved all your code to RPG IV. CODE/400 supports
many forms of RPG on the AS/400 system, including RPG, RPG36, RPG38, and
SQLRPG. It also supports many other AS/400 language types, including CL,
DDS, C, COBOL, and Java.

Another reason for choosing RPG/400 code in this example is to illustrate how
CODE/400 can help in your conversion to RPG IV. From a single pull-down menu
option, CODE/400 converts either a selected portion of the source or an entire
source member to RPG IV. Using this option, you can easily convert source
members visually and then save the resulting temporary workstation file back to
an AS/400 source member. Alternatively, you can simply include logic from an
existing RPG/400 program. For example, you can include it into a new RPG IV
program or module by cutting and pasting the portion of the logic you need from
the temporary file and subsequently discarding it.
390 Who Knew You Could Do That with RPG IV?

Figure 43. Code sample converted to RPG IV

Figure 43 shows the results of converting the sample code to RPG IV. Notice that
the results are the same as if we had issued a Convert RPG Source
(CVTRPGSRC) command on the AS/400 host. However, in this case, CODE/400
has created a temporary file on the workstation. You can decide now whether to
save the converted source to a member on the system or to simply copy part of
the logic to another source member written in RPG IV.

Note the source sequence numbers in Figure 43 as in the SEU editor. SEU line
commands (such as C, A, B, I) can be used there, just as they can in SEU.
However, there are also tools such as the more workstation-oriented cut, copy,
and paste, as illustrated on the tool bar. For programmers who prefer not to use
the SEU-type line commands, the sequence numbers can be removed from the
edit window via an option from a menu.

Prompting on RPG source statements works much like it does in SEU by pressing
F4. However, many programmers find it less necessary to prompt in the
CODE/400 editor because the CODE/400 edit panel understands the parts of the
RPG specification, and the Tab key is programmed to jump from "token" to
"token". For example, on a C specification, the tab key allows programmers to
jump quickly and easily from Factor 1 to Operation Code to Factor 2 to Result,
etc. And the format line in the CODE/400 editor changes automatically to the
format of the source line where the cursor is currently positioned. Therefore, it is
easy to tell always exactly what part of the specification your cursor is on without
prompting.

Other useful features of the editor not found in SEU include:

• Multiple levels of "undo" support
• Autosave of the source code to a local workstation file periodically
A modern tool for a modern language: CODE/400 391

• A filter to see only the lines of code containing a specific string, such as a
variable name

• An indented view of nested logic (illustrated in Figure 44)

Figure 44. Sample code with indented view

7.2 The CODE/400 verifier

For many programmers, the best part of the CODE/400 toolset is the code
verifier. The verifier verifies the validity of the code in the member. It not only
checks the language syntax (which the editor also checks, as the SEU editor
does), but it can also check the semantics of the code. It can check everything
about the code that the compiler would check prior to creating a compiled
program or module object. For example, the verifier can detect errors such as an
RPG variable name that has not been defined or that has been misspelled.

The verifier runs on the programmer’s workstation, but automatically
communicates with the AS/400 system to obtain information needed from the
host, such as external file descriptions or /COPY members still on the AS/400
system. When the code you have written or modified verifies without errors, it will
almost certainly compile without errors on the AS/400 system. This local
verification means there is no more need to submit multiple compile jobs to the
AS/400 system to detect the kind of errors previously caught at compilation time.

The CODE/400 verifier has an option to cache (store a local workstation copy of)
the external file descriptions and /COPY members used in a source member. This
option reduces the number of times that the verifier needs to communicate with
the AS/400 host system, and therefore improves the speed of the verification
process.
392 Who Knew You Could Do That with RPG IV?

Another big advantage of caching is that the programmer can continue to do work
without any connection to the AS/400 host system. This makes it much easier for
programmers who work as telecommuters from home or who simply occasionally
find the need to finish some programming task away from the office. If the file
descriptions are cached and the source members copied to the local drive on the
workstation, programmers can continue to not only edit, but also verify their code
in a disconnected state.

With the CODE/400 verifier, there is no need to look for your compile-type errors.
Any errors on a code verification (or a compile, in case you did not verify first) pop
up in a window over your editor panel. Then you can double-click on an error in
the list, and the editor automatically is positioned to the line of code in error. This
error feedback mechanism can save a significant amount of time in finding and
correcting the kind of errors normally caught at compilation time. An example of
the verifier and its error feedback window is in Figure 45.

Figure 45. CODE/400 verifier error feedback

7.3 The CODE/400 Designer for DDS

To help programmers develop and maintain DDS for display files and printer files,
CODE/400 has a tool called CODE Designer. In the latest release of CODE/400,
the designer can also be used to create or maintain physical data file DDS.

The graphical capabilities of the workstation-based designer allow for
significantly enhanced features over the use of Screen Design Aid (SDA) or
Report Layout Utility (RLU). In addition, the same design tool is used for both
display files and printer files, so you only need to learn one tool instead of two.
A modern tool for a modern language: CODE/400 393

Since we are primarily interested in RPG coding, we do not go into detail about
the CODE Designer. However, you can see a sample of the design panel for a
display file in Figure 46.

Figure 46. A sample CODE Designer session for display file DDS

7.4 Other tools included with CODE/400

In addition to the editor, verifier, and designer tools we already looked at,
CODE/400 includes a graphical interactive source view debugger and a project
organizer, which is a list manager much like Programming Development Manager
(PDM). CODE/400 comes packaged with VisualAge for RPG in a product called
"VisualAge RPG and CODE/400" (5769-CL3). See Chapter 8, “VisualAge for
RPG as a GUI for RPG applications”, for more information about the companion
tool VisualAge for RPG.

7.5 More information about CODE/400

For more information about CODE/400, visit the IBM CODE/400 and VisualAge
RPG Web site: http://www.software.ibm.com/ad/varpg

This Web site (as of this writing) offers an evaluation version of the product for
you to download and try CODE/400 for yourself. The evaluation version has all
the features of CODE/400, with two limitations. Service packs cannot be applied
to the evaluation version, and a limited number of AS/400 host file opens are
allowed with the evaluation version. If you do not want to download the code, you
may sign up to have a CD sent to you containing the evaluation version.

In addition, you can download an interactive tutorial from this Web site. Many
other helpful documents and references are also available.
394 Who Knew You Could Do That with RPG IV?

Chapter 8. VisualAge for RPG as a GUI for RPG applications

VisualAge for RPG (VARPG) is a tool that can be used to create client/server
applications on a Windows workstation. VARPG uses the RPG IV language in
combination with a Graphical User Interface (GUI) design tool.

An application written with VARPG can reuse application code from the AS/400
host system. It can also easily access data from the AS/400 database using
native RPG operations, such as CHAIN, READ, or UPDATE. In addition, calling
RPG (or other language) programs on the AS/400 host can be accomplished by
an ordinary program call with parameters, as on the AS/400 host.

In addition to running the resulting client application on a Windows 32-bit client,
VARPG can now generate Java source code. The Java code can subsequently
be run on virtually any type of client, as long as there is a Java Virtual Machine
available on that client.

This chapter discusses some options for creating a thin user interface layer that
may be suitable for using in conjunction with background RPG host-based
application programs.

8.1 The different VARPG application models

There are two primary types of models for client/server applications: thin client
and thick client. Using the thin client model is often preferable for ease of change
management, more efficient utilization of system and network resources, and for
increased reliability.

Thick client applications include almost all the application code in the workstation
portion of the application, using the AS/400 server primarily for database access.
VisualAge RPG (VARPG) allows programmers to create thick client applications.

Thin client applications separate the application logic between the workstation
and the AS/400 server, leaving only the GUI handling portion of the application
logic on the workstation. A large portion of the application logic, including most or
all the database access logic, resides in server programs running on the AS/400
server.

These thin client applications are not to be confused with Thin Client hardware,
called the IBM Network Station, which is a simple workstation without local
persistent hardware storage. The term thin client application in this chapter is
used for applications running on a Windows 95/NT workstation and exploiting the
AS/400 server for major computing tasks.

A VARPG thick client application would do all processing including database
access from the workstation and follow much the same programming style found
in today's RPGIII or RPGIV applications. The only difference is that it runs on the
workstation instead of the AS/400 system. File specifications are used to specify
which database files to access and native RPG operation codes, such as READ,
CHAIN, etc., are coded to access the data on the server. The AS/400 functions as
a data server but does minimal computing to support the VARPG application in
this thick client application model.
© Copyright IBM Corp. 2000 395

The disadvantage of this model is the limited capability of reusing modules and
the increased management effort to provide change management for these
applications. It also under utilizes the processing power of the server by moving
processing onto client workstations.

On the other hand, by making the client portion of the application thinner, the
amount of code running on the client is reduced. Consequently, the complexity of
the application is reduced, and reusability is greatly enhanced. Maintenance of
applications may likely be easier as well. This chapter discusses two possible
implementations of the thin client application model in VARPG applications.

8.2 VARPG thin application models

The thin VARPG application model can be implemented in multiple ways. Two of
these are described in this section. One implementation uses remote calls to an
AS/400 system. The other utilizes data queues on the AS/400 system.

First, we look at the user interface. The same user interface is used in both
examples.

8.3 The user interface for the client application

This is a simple application that reads data from a customer file and fills a subfile
with 10 records at a time. Figure 47 shows the user interface.

Figure 47. VisualAge for RPG: Example user interface

It consists of a Window with Canvas, a subfile, and a push button to load an
additional page of records into the subfile. The subfile size for this particular
example is 10 records, but this can be changed by increasing the height of the
subfile part.

The following VARPG part names are used in this example:

• Window: WIN1
• Subfile: SUB1
• Pushbutton: PSBMORE
396 Who Knew You Could Do That with RPG IV?

8.4 Sample application using remote calls

In traditional AS/400 RPG programs, the user interface code and database
access logic are intermixed into one module. Part of this structure stems from the
history of RPG and the usage of the Original Program Model on the AS/400
system that forced this model onto the programmer to achieve good performance.
The idea for the thin application model in VARPG is to split the user interface
logic completely from the database access logic and run it on different systems.
The user interface logic runs on a Windows client. The database access logic
runs on the AS/400 server.

In this sample application, we show how to support reading records of data from
the database and placing this data into a GUI subfile. The program on the AS/400
system can also support full database access (READ and WRITE). This can be
implemented by supplying one program for each different access method or by
passing the desired operations as parameters to a single server program.

8.4.1 The client program
The main part of the client side program is the user interface. It is created the
same way as in all VARPG applications and can use the external data base
descriptions of the AS/400 system by using database reference fields. Any
validation checking specified in the database (for example, range or values
checking specified in the DDS) is done automatically on the client by the VARPG
runtime component.

The client program requests data from the server by calling a server data access
program. The data itself is passed via parameters. The client program does not
use file specifications. Instead, the data definition is done through externally
described data structures. This way the programmer still gets the benefits of
external field descriptions in their VARPG program.

8.4.2 The server program
Since the VARPG client program excludes the database access logic, this
function is now provided in the server program. The AS/400 server program
contains all file definitions and operations to handle database processing.

Data is exchanged by moving a data structure as a parameter between the client
and the server program. The data structure contains the field definitions of the
data file record format. In this example for accessing a collection of records, we
used a multi-occurrence data structure. The number of occurrences is equal to
the numbers of records to be passed. In this example, it is 10.

Any operational information (error information, for example) can be passed by a
parameter as well.

The server program is invoked by the first call from the VARPG client program
and ends after each request. The return operation code is used with the Last
Record (LR) indicator set off in order to keep the invocation environment. This
improves performance in subsequent calls since no initialization is needed and
the database file does not need to be reopened. This also requires the program
to be created to run in either the Default activation group or a Named ILE
activation group. The use of a *NEW activation group would destroy the
invocation environment and free storage immediately.
VisualAge for RPG as a GUI for RPG applications 397

8.4.3 Sample RPG source for the client side
The VARPG program consists of the D and C specs (specifications). First, we
look at the data definition (D) specifications:

• The D specs define the fields used as parameters:

– Multi-occurrence structure Cust.

– Numeric field CustElem contains the maximum number of records being
requested.

– Named indicator EOF is passed when the end of file indicator is set to ON
in the server program.

– Numeric field NRecords contains the number of records returned.

• Two working fields are specified:

– FileEnd is a named indicator for keeping the file end condition.
– Counter is a counter for the DO loop.

• One constant to define the program being called on the server:

GetRec defines the linkage to the server and the actual name of the server
program. Make sure the program name is specified in upper case in the Const
keyword for GetRec.

D Cust E Ds ExtName(Customer)
D Occurs(10)
D INZ
D EOF S N INZ
D NRecords S 2 0
D FileEnd S N INZ
D Counter S 2 0
D CustElem S 2 0 INZ(%Elem(Cust))

D GetRec C Linkage(*Server)
D Const('GETREC')

• The C specs contain one Action Subroutine that is linked to three events:

– Press event from the push button part PSBMore.

– Create event from the window part Win1 (inked to PSBmore’s press action
subroutine).

– Page end event from the subfile part Sub1.

The first statement calls to the server program to retrieve more records.

The rest of the logic simply processes the data passed via parameter and moves
it from the multi-occurrence data structure to the subfile.

After the subfile is filled with a set of records, the highest record number in the
subfile is applied to the SetTop attribute to move this set of records into the visible
area of the subfile.

Next, if the end of file is reached, the More push button is set to be disabled.

Be aware that the Page Down keys still work so it is possible to cause an event
that will trigger this action subroutine even with a disabled push button.

C PSBMore BegAct PRESS Win1
C Call GetRec
C Parm Cust
C Parm CustElem
398 Who Knew You Could Do That with RPG IV?

C Parm %EOF EOF
C Parm NRecords
C Eval Counter = 1

C Dow Counter <= NRecords And Not FileEnd
C Counter Occur Cust
C Write Sub1
C Eval Counter = Counter+1
C EndDo

C Eval %SetAtr('Win1':'Sub1':'SetTop')
C = %GetAtr('Win1':'Sub1':'Count')

C If EOF
C Eval %SetAtr('Win1':'PSBMore':'Enabled') = 0
C Eval FileEnd = *On
C EndIf

*
C EndAct

As you can see, the client end of this code is straight forward and minimizes the
processing on the workstation.

8.4.4 Sample RPG source for the server side
The file specification defines the external database file named Customer. The
data definition specifications define the parameters to be passed. These
definitions must match the parameters defined in the client program earlier. Count
represents a work variable for the counter in the DO loop. CustElem contains the
number of elements in the data structure Cust. It is used as a limit for a DO loop.

* Program to read a set of records into a data structure
**
FCustomers IF E Disk
D Cust E Ds ExtName(Customers)
D Occurs(10)
D EOF S N
D Count S 2 0
D CustElem S 2 0

The calculation specifications define the *Entry parameter list.

The DO loop reads from the database file and puts the data into data structure
Cust, which is passed back as a parameter to the Client program.

The two other parameters indicate the status of the database access:

• EOF is set to ON if the end of file (%EOF) is detected on the READ statement.

• Count contains the number of records being passed back to the client in the
data structure Cust.

C *Entry PList
C Parm Cust
C Parm CustElem
C Parm EOF
C Parm Count

C Eval Count = 1
C Count Occur Cust
C Read(E) Customers

C DoW Count < CustElem and Not %EOF
C Eval Count = Count + 1
C Count Occur Cust
C Read(E) Customers
C EndDo
VisualAge for RPG as a GUI for RPG applications 399

C If %EOF
C Eval Count = Count - 1
C Eval EOF = *On
C EndIf

C Return

When compiling the server program, be sure not to specify *NEW for Activation
Group. If *NEW is specified, any storage allocated by this program is freed when
RETURN is executed. This would adversely affect the performance of the
application, since the server program would need to be restarted and reopen the
database file on each call.

If you use the CRTBNDRPG command to compile this program, specify either
DFTACTGRP(*Yes) or DFTACTGRP(*No) and supply a name for the ACTGRP parameter.

Note: The default activation group name of QILE is acceptable.

If you use the CRTRPGMOD command followed by the CRTPGM command to
create this program, be sure to specify a name for the ACTGRP parameter.

One of the benefits of this thin client example is the reusability of the server
application by different applications. Even traditional 5250 applications can use
the server modules for database access. This approach certainly makes it easier
to maintain applications since changes in a server module are reflected in all
applications that use it.

8.4.5 Overview diagram
Figure 48 shows a schematic diagram of our example.

Figure 48. VisualAge for RPG: Example schematic diagram

The client program gets requests from the user interface. It calls a server
program that reads records from a database program and passes this data back
to the client through parameters. The subfile is filled with the returned data.
400 Who Knew You Could Do That with RPG IV?

8.5 Sample application using data queues

The AS/400 system provides built-in support for data queues to allow applications
to communicate with each other asynchronously. This sample application exploits
data queues instead of parameter passing to exchange the data from the
database with the VARPG client program. This application is based on two data
queues on the AS/400 system that are used by the client and the server program.
The server program in this example is launched as an independent program on
the server using the NOWAIT parameter in the D specs of the client program.

8.5.1 The client application
The user interface is the same as in the previous application. Basically, a subfile
is filled with data from the AS/400 server database. The filling of the subfile starts
with the create event of the window and continues when the More... push button
is pressed or a page end event occurs using the Page Down key. This is
essentially the same as in the previous example.

The setup for the data queues is done in the initialization subroutine *INZSR. It
calls a program on the AS/400 system to create two data queues in a library on
the AS/400 system. To create unique data queues for each client, the last five
characters of the IP address are tagged on to the name of the data queues. The
characters "I" or "O" at the end of the data queue name provide the unique names
for the Input or Output data queues.

The server job receives commands from the "O" data queue. Commands are sent
from the client program to the "O" data queue.

After creating the data queues, the server program is started. The two data queue
names are passed to it. It then waits on data queue "O" for commands from the
client program.

The client program is activated by GUI events and then sends requests to data
queue "O". It then waits on data queue "I" until this data queue is filled by the
server job.

When the client program gets a termination request, the *TERMSR subroutine is
invoked to signal the server program to end, and the two data queues are
deleted.

8.5.2 Client sample source
The program is a bit larger because the data queue environment has to be
managed in here as well.

8.5.2.1 Data definitions
DLL getHostName is a Windows DLL to get the IP address from the Client to
create unique data queue names. Note that we are using a prototyped call to
access the Windows DLL from the VARPG program.

D* Prototype for DLL
D* This DLL gets the workstation IP address, hostname from WINDOWS TCPIP
D GetHostName Pr ExtProc('getHostName')
D DLL('HOSTNAME.DLL')
D Linkage(*STDCALL)
D 10A
D 15A
VisualAge for RPG as a GUI for RPG applications 401

D EnthName S 10A
D EntIPAdd S 15A
D* Command strings to create and delete data queues
D QCMDEXC S 10A Inz('QCMDEXC')
D Linkage(*server)
D Cmd S 256A
D Cmdlen S 15P 5 Inz(%Size(Cmd))
D Cmd1 S 256A INZ('CRTDTAQ DTAQ(QGPL/')
D CmdE S 256A INZ('DLTDTAQ DTAQ(QGPL/')
D Cmd2 S 9A Inz(') MAXLEN(')
D* Prefix for dataq name
D QName1 S 4A Inz('CUSQ')
D* Variables that contain the 2 dataq names used for one client
D QNameI S 10A
D QNameO S 10A
D* Define RCVDTAQ and SNDDTAQ programs as server programs
D QRCVDTAQ S 10A Inz('QRCVDTAQ')
D Linkage(*Server)
D QSNDDTAQ S 10A Inz('QSNDDTAQ')
D Linkage(*Server)
D* RPGIV server program definition
D DATAQ S 10A Inz('DATAQ')
D Linkage(*Server) NoWait
D* Limit for loop
D CustElem S 2 0 Inz(%Elem(CustDS))
D* Indicator for file end reached
D FileEnd S n
D* Parameters for dataq API's
D MsgSz S 5 0
D NameOfQ S 10
D NameOfLib S 10
D Count S 2 0
D MaxLen S 10 0 Inz(%Size(CustDs:*All))
D WaitTime S 5 0

D* Data structure containing data base data
D CustDS E Ds ExtName(Customers) Occurs(10)
D Inz
D* data structure containing process information
D RInfo Ds
D EOF n
D NRecords 2 0
D Filler 20

8.5.2.2 The initialization subroutine
The data queues are created, and the server RPG program DATAQ is started.
The program is invoked with the NOWAIT keyword. This keyword notifies the
client program not to wait for it to return. Both programs are working completely
asynchronously.

* Initialization subroutine
* used to setup the server environment
C *InzSr BegSr
C* Get client IP addr to build unique dataq names, EntIPAdd contains IP addr
C CallP getHostName(enthname:entipadd)
C* Build Name for 'I' and 'O' Dataq: Add last 5 chars of IP address + I or O
C Eval QNameI= QName1 +
C %Subst(EntIPAdd:%Len(%Trim(EntIPAdd))-5:5)
C + 'I'
C Eval QNameO= QName1 +
C %Subst(EntIPAdd:%Len(%Trim(EntIPAdd))-5: 5)
C + 'O'
C* Create data queues
C Eval Cmd = %Trim(%TrimR(Cmd1) + QNameI + Cmd2
C + %Editc(%Size(CustDS:*All):'Z') + ')')
C Call(e) QCMDEXC
C Parm Cmd
C Parm CmdLen
C Eval Cmd = *Blank
C Eval Cmd = %Trim (%TrimR(Cmd1) + QNameO + Cmd2
C + %Editc(%Size (CustDS:*All) :'Z') + ')')
C Call(e) QCMDEXC
C Parm Cmd
C Parm CmdLen

C* Call server program to access data base on server
402 Who Knew You Could Do That with RPG IV?

C Call(e) DATAQ
C Parm QNameI
C Parm QNameO

C* Initialization is done, now do event processing
C EndSR

8.5.2.3 The action subroutine
A request is sent to data queue "O". Then the client program waits for a response
from server program DATAQ on data queue "I". After receiving the data, the
subfile is filled in a loop.

C PSBmore BegAct PRESS Win1
C* As long as there is data, get more data
C If Not FileEnd
C*
C* Send request to data queue 'O' to fetch data
C*
C Eval NRecords=10
C Call QSNDDTAQ
C Parm QNameO
C Parm 'QGPL ' NameOfLib
C Parm 23 MsgSz
C Parm RInfo

C*Wait on dataq 'I' for data
C* Expecting processing data here in DS RInfo
C Eval WaitTime = -1
C Eval MsgSz = 23
C Call QRCVDTAQ
C Parm QNameI
C Parm 'QGPL ' NAMEOfLiB
C Parm MsgSz
C Parm RInfo
C Parm WaitTime

C* Expecting data from data base here
C Eval MsgSz = %Size(CustDS:*All)
C Call QRCVDTAQ
C Parm QNameI
C Parm 'QGPL ' NAMEOfLib
C Parm MsgSz
C Parm CustDS
C Parm WaitTime
C* For as many records as the server has read, fill the subfile
C Eval Count = 1

C DoW Count <= NRecords and Not FileEnd
C Count Occur CustDS
C Write Sub1
C Eval Count = Count + 1
C EndDo

C* If end of file was signaled, disable the push button
C If EOF
C Eval %Setatr('Win1':'PSBMore':'Enabled') = 0
C
C Eval FileEnd = *On
C EndIf
C EndIf
C* End of action subroutine
C EndAct
VisualAge for RPG as a GUI for RPG applications 403

8.5.2.4 Termination subroutine
A termination request is sent to server program DATAQ, and the two data queues
are deleted.

C *TermSr BegSr
C* Indicate end of program to server program and send data to dataq 'O'
C Eval NRecords = 0
C Call(e) QSNDDTAQ
C Parm QNameO
C Parm 'QGPL ' NameOfLib
C Parm 23 MsgSz
C Parm RInfo

C* Delete both data queues
C Eval Cmd = *Blank
C Eval Cmd = %Trim(%TrimR(CmdE) + QNameI + ')')
C Call(e) QCMDEXC
C Parm Cmd
C Parm CmdLen
C Eval Cmd = *Blank
C Eval Cmd = %Trim(%Trimr(CmdE) + QNameO + ')')
C Call(e) QCMDEXC
C Parm Cmd
C Parm CmdLen

C* Application ends
C EndSr

8.5.3 The server program
After the server program is launched, it enters a loop and waits at data queue "O"
until it gets a request from the client program. Two different requests are possible
in this example. The program determines which request has been sent to read
more data or to terminate.

For a request for more data, it reads 10 more records from the database and then
send two items to data queue "I".

The first item contains process information for the number of records that were
actually read and whether an end of file situation occurred. The second item
contains the multi-occurrence data structure containing the data from the
database file. The client program receives these records from data queue "I" and
fills the subfile accordingly.

When the server program signals that a termination is requested, the LR indicator
is set on, and the DO loop ends. This ends the program. Any other clean up is
managed by the client program.

8.5.4 Server sample source
Here is the example source for both the file and data definitions, and in the next
section, the main line program.

8.5.4.1 File and data definitions
Here are the definitions of the file and data used in the example program.

FCustomers IF E Disk
D QRcvDtaQ PR ExtPgm('QRCVDTAQ')
D QNameO 10
D NameOfLib 10
D MsgSz 5 0 Const
D RInfo 23
D WaitTime 5 0 Const

D QSndDtaQ PR ExtPgm('QSNDDTAQ')
D QNameI 10
404 Who Knew You Could Do That with RPG IV?

D NameOfLib 10
D MsgSz 5 0 Const
D RInfo 23

D* Data structure containing data base data to be passed to client
D CustDS E Ds ExtName(Customers) Occurs(10)
D* Data structure to pass control information between client and server
D RInfo Ds
D EOF N
D Count 2 0
D Fill 20

D* Number of occurs in DS for loop limit
D CustElem S 2 0 Inz(%Elem(CustDS))
D* library name for dataq and data size to be send to dataq and wait time
D NameOfLib S 10 Inz('QGPL')
D MsgSz S 5 0
D WaitTime S 5 0
D* Names of dataq's passed from client
D QNameI S 10
D QNameO S 10

8.5.4.2 Main line program
Process the DO loop. Wait on data queue "O" until requests arrive. Read more
records from the database. Send the data to data queue "I" and wait again for
more requests.

C* Beginning of mainline
C *Entry Plist
C Parm QNameI
C Parm QNameO
C* This DO loop is forever until client program signals that it
C* terminates
C DoW Not *InLR
C* Wait for client program to signal that it needs data
C CallP QRcvDtaQ (QnameO: NameOfLib: 23: RInfo: -1)

C* Read 10 records from database file
C* Count = 0 means client program is terminating
C If Count > 0
C Eval Count = 1
C Count Occur CustDS
C Read(e) Customers
C DoW Count < CustElem and Not %EOF(Customers)
C Eval Count = Count+1
C Count Occur CustDS
C Read(e) Customers
C EndDo

C* Determine whether there is more data in file
C If %EOF(Customers)
C Eval Count = Count-1
C Eval EOF = *On
C EndIf

C* Send information to the data queue.
C* Send one record with information on how many records are read and
C* whether end of file was reached
C*
C CallP QSndDtaQ (QNameI: NameofLib: 23: RInfo)

C* Send the data in DS from database file to dataq
C 1 Occur CustDS
C CallP QSndDtaQ (QNameI: NameofLib:
C %Size(CustDS: *All): CustDs)

C* When client program terminates it sends Count 0, then terminate this
C* program as well
C Else
C Eval *InLR=*On
C*
C EndIf
C EndDo
C*
C* End of MAINLINE
VisualAge for RPG as a GUI for RPG applications 405

8.5.5 Overview diagrams
The client and server programs in this example step through a series of states as
described in the following sections.

8.5.5.1 Initial state
In the initial state of the application, two data queues are created, and server
program DATAQ is started. The server program requests data from data queue
"O" and is in an indefinite wait. See Figure 49.

Figure 49. VisualAge for RPG: Initial state of server program

8.5.5.2 Second state
The second state is entered when a GUI event requests more data. The three
events that trigger the action subroutine are:

1. Create event from a window.
2. Press an event from the More... push button.
3. Page end an event from a subfile.

See Figure 50.
406 Who Knew You Could Do That with RPG IV?

Figure 50. VisualAge for RPG: Client program requests data

The client program then waits on data queue "I" for data. The server program
accesses the database file and retrieves the data.

8.5.5.3 Third state
The third state has the server program fill data queue "I". Then, the client
program becomes active and puts the data into the subfile. See Figure 51 on
page 408.
VisualAge for RPG as a GUI for RPG applications 407

Figure 51. VisualAge for RPG: Server program sends data

After this, the initial state is reached, and the process starts again.

8.6 Variations of these scenarios

In addition to these specific examples, there are variations and combinations of
both scenarios possible. The goal here is to minimize the processing on the client
and use the power of the server to run these applications. Also easy reuse of
modules on the server can be accomplished and even 5250 and GUI applications
can share the same server programs in these scenarios.

We know of two variations of the data queue example that are implemented in
current production environments by customers of VARPG.

One method uses requests in the form of an SQL statement that is passed to a
server program. This server program issues the SQL statement and routes the
received data to a data queue. The client program waiting on the data queue
uses the data passed back to satisfy the end user request. In this particular
application, a single keyed data queue is used instead of multiple data queues
(two for each workstation) in our previous example.

Other implementations pass all input data from the user interface to a server
program to perform error checking and processing on the server. Any error
conditions are passed back to the client. This approach allows high reusability of
business logic between 5250 applications and GUI applications and provides for
a thin client application.
408 Who Knew You Could Do That with RPG IV?

8.7 Summary

There are several different ways to implement a relatively thin client application
model with VARPG. Multiple built-in capabilities of VARPG that provide
integration with the AS/400 server platform can be exploited in all of them. In our
two examples, three of these built-in capabilities are used:

• External description of data structures: Allows you to define externally
described data in a data structure easily even if no direct file access is used.

• Remote call interface: Provides a simple way to call remote server programs
and pass data between them.

• Reference fields in a GUI designer: Fields in the subfile of the user interface
are defined as reference fields. No additional definition of data base fields is
needed.

One of the benefits of Visual Age for RPG is the full support of the RPGIV
programming language, so both the server and the client applications can be
implemented in the same language.

The tools used (VARPG and CODE/400) to implement the two different
applications are similar. To edit server programs, the same editor (CODE/400) is
used as for client programs (VARPG).

Copying and pasting code from one application source to the other is easy! You
only need to cut and paste using the clipboard. This development environment
also allows you to easily change code even if a switch between client program
source and server program source is often required during the development
phase. CODE/400, the companion product of VARPG, provides the ideal
workstation toolset for server program development. When buying VisualAge for
RPG, a copy of CODE/400 is included as well, so both tools are readily available
to the RPG programmer.

Together with CODE/400, VisualAge for RPG is an ideal development
environment to build a client/server application. In this environment, the
applications are based on a thin client application model and relies on a robust
industry strength server that scales well to any production environment.

8.8 More information VisualAge for RPG

For more information about VisualAge for RPG, visit the IBM VARPG Web site at:
http://www.software.ibm.com/ad/varpg

From this Web site, you can (as of this writing) download an evaluation version of
the product to try out VARPG for yourself. In addition to the evaluation version,
you may also download an interactive tutorial from this Web site. Many other
helpful documents and references are also available form this site.

You may also want to check out the book VisualAge for RPG by Example, by
Bryan Meyers and Jef Sutherland, which is available on the Web at:
http://www.news400store.com
VisualAge for RPG as a GUI for RPG applications 409

410 Who Knew You Could Do That with RPG IV?

Appendix A. Example RPG IV programs on the Web

The RPG programs and AS/400 database libraries used in this redbook are
available for you to download from the Internet. These examples were developed
using an AS/400 system with OS/400 and the RPG compiler (5769RG1) at V4R4.

The RPGISCOOL SAVF has been saved at a target release of V3R2M0
(TGTRLS(V3R2M0)). This should allow you to restore the library at any release of
OS/400 at V3R2M0 or later. Some of the programming examples use functions
and features of the compiler and OS/400 system that only compile and run at
V4R4 of OS/400. Others may run on a V3R2 or V3R7 system and above with
minor modifications.

A.1 Downloading the files

To use these files, you must download them to your personal computer from the
Internet site. A file named README.TXT is included. It contains instructions for
restoring the AS/400 library. Go to the site: http://www.redbooks.ibm.com

Click on Additional Materials, and select the directory SG245402. In the
SG245402 directory, click readme.txt, and follow the directions.

These example programs have not been subjected to any formal testing. They
are provided "as is". Use them for reference only. Refer to Appendix D, “Special
notices” on page 419, for more information.

Important notice
© Copyright IBM Corp. 2000 411

412 Who Knew You Could Do That with RPG IV?

Appendix B. An introduction to the Integrated File System (IFS)

As Integrated File System (IFS) APIs apply to the integrated file system, this
appendix serves to introduce you to this storage directory architecture.

B.1 Introduction

The IFS of OS/400 provides a consistent structure for manipulating all types of
information (for example, file types) stored in an AS/400 system. It provides a
consistent structure and interface (for users and application programs) to access
traditional database files, libraries, folders, documents, and so on, as well as
increasingly important information such as images, audio, and video. Support is
provided for the following information:

• Stream files, which can contain long continuous strings of data. Examples
include the text of a document or the long string of data representing a
scanned image.

• CICS files (popular on the IBM S/390 computer family).

• A hierarchical directory structure (similar to that of UNIX and OS/2) that allows
access to objects by specifying the path through the directories to the object.

• A common interface that allows users and application programs to access all
information, such as stream files, database files, documents, and other
objects stored in the AS/400 system.

• Support for the Network File System (NFS) and the Remote File System
(RFS) popular in UNIX environments.

The integrated file system enhances the data management capabilities of OS/400
to better support emerging and future forms of information processing (for
example, client/server, open systems, and multimedia.) The following benefits are
provided by the Integrated File System:

• Fast access to AS/400 data, especially for applications using the PC file
server (shared folder) facilities.

• More efficient handling of the increasingly important types of stream data,
such as images, audio, and video.

• A file system and directory base for supporting UNIX-based open system
standards, such as POSIX and XPG. This file and directory structure also
provides a familiar environment for users of UNIX and PC operating systems,
such as DOS and OS/2.

• Allows information (such as record-oriented database files, UNIX-based
stream files, and file serving) to be handled through separate file systems or
managed through a common interface, depending on user needs.

• Allows PC users to take better advantage of the graphical user interface. For
example, OS/2 users can use the OS/2 graphical tools to operate on AS/400
stream files and other objects in the same way as they operate on files stored
on their PCs.

• Provides continuity of object names and associated object information across
national languages. This support ensures that individual characters remain the
same when switching from the code page of one language to the code page of
another language.
© Copyright IBM Corp. 2000 413

B.2 Integrated File System structure

Figure 52 shows the structure of the OS/400 IFS. From the perspective of
structures and rules, the more traditional OS/400 support for accessing database
files, documents, and various other object types through libraries can be thought
of as a separate file system, which is called QSYS.LIB. Similarly, the new OS/400
support for accessing stream files is a separate file system called QDLS. The IFS
consolidates these two file systems (and others) and provides a consistent
interface (for users and application programs) to all of the information stored on
an AS/400 system.

Figure 52. The Integrated File System structure

The following separate file systems are also consolidated under the integrated
file system:

• root: The root file system is designed to take full advantage of the stream file
support and hierarchical directory structure of the integrated file system. It has
the characteristics of the DOS and OS/2 file systems.

• QOPENSYS: The open systems file system is designed to be compatible with
UNIX-based open system standards, such as POSIX and XPG. It is stream file
oriented and supports case-sensitive object names.

• QLANSrv: Formerly known as OS/2 Warp Server, the LAN server file system
provides access to the same directories and files as those accessed through
the OS/2 Warp Server licensed program. It allows users of the PC file server
(shared folders) and AS/400 applications to use the same data as OS/2 Warp
Server(5769-XZ1) clients. OS/2 Warp Server runs applications that do not
require graphical user interface interaction. OS/2 Warp Server increases save
and restore performance, provides printer serving capability, and TCP/IP
support including NETBIOS over TCP/IP, and LAN-to-LAN print capability.
414 Who Knew You Could Do That with RPG IV?

The interface provided by the Integrated File System is optimized for input/output
of stream data in contrast to the record input/output provided through the
traditional OS/400 data management interfaces. A set of common user facilities
(commands, menus, and displays) and application program interfaces (APIs) is
provided for interacting with all OS/400 file systems (new and old). Triggers,
stored procedures, declarative referential integrity, two-phase commit, and long
field names are supported under all file forms. Therefore, it improves DB2 for
AS/400, as well as CICS/400.

B.2.1 Stream files

A comparison of stream files to database files is useful. A database file is record
oriented, which means each item of information (or record) is organized in a
predefined format consisting of one or more pieces of information (or fields) that
have specific characteristics, such as length and data type. In a traditional
database file, all records have the same field structure.

A stream file (Figure 53) contains a continuous stream of data bits with no field or
record structure. Documents stored in AS/400 folders are stream files. Other
examples of stream files are PC files and the files in UNIX systems.

Figure 53. Stream files

The different structures of stream files and record-oriented files lend themselves
to different situations. For example, a record-oriented file is well suited for storing
customer statistics, such as name, address, and account balance. These
predefined fields can be individually accessed and manipulated using the
extensive programming facilities of the AS/400 system. A stream file is better
suited for storing information, such as a customer’s picture, which is composed of
a continuous string of bits representing variations in color. Stream files are
particularly well suited for storing strings of data, such as the text of a document,
images, audio, and video.
An introduction to the Integrated File System (IFS) 415

B.3 Path name rules using APIs

The following list summarizes the rules you need to keep in mind when specifying
path names in the APIs. The term "object" in these rules refers to any directory,
file, link, or other object.

• Path names are specified in hierarchical order beginning with the highest level
of the directory hierarchy. The name of each component in the path is
separated by a slash (/), for example:
Dir1/Dir2/Dir3/UsrFile

The back slash (\) is not recognized as a separator. It is handled as just
another character in a name.

• Object names must be unique within a directory.

• The maximum length of each component of the path name and the maximum
length of the path name string can vary for each file system. For more
information on the limits of each file system, refer to the AS/400 Information
Center found at http://www.as400.ibm.com/infocenter

Once you reach the Information Center site, select Database and File systems,
and then Integrated File System. Go to the section File System Comparison,
under File System.

• A / character at the beginning of a path name means that the path begins at
the "root" (/) directory, for example:

/Dir1/Dir2/Dir3/UsrFile

• If the path name does not begin with a / character, the path is assumed to
begin at the current directory, for example:

MyDir/MyFile

Here, MyDir is a subdirectory of the current directory.

• To avoid confusion with AS/400 special values, path names cannot start with a
single asterisk (*) character. To specify a path name that begins with any
number of characters, use two asterisks (*), for example:

'**.file'

Note that this only applies to relative path names where there are no other
characters before the asterisk (*).

• When operating on objects in the QSYS.LIB file system, the component
names must be of the form name.object-type, for example:

/QSYS.LIB/PAYROLL.LIB/PAY.FILE

• Do not use a colon (:) in path names. It has a special meaning within the
system.

• Unlike path names in Integrated File System commands, an asterisk (*), a
question mark (?), an apostrophe ('), a quotation mark ("), and a tilde () have
no special significance. They are handled as another character in a name.

For more information on the IFS, refer to the AS/400 Information Center found at:
http://www.as400.ibm.com/infocenter

Once you reach the Information Center site, select Database and File System, and
then Integrated File System. You can also consult the Integrated File System
Introduction V4R3, SC41-5711.
416 Who Knew You Could Do That with RPG IV?

Appendix C. PTFs for *SRCSTMT and *NODEBUGIO

The following information provides details on the specific PTFs necessary to
enable the OPTION *SRCSTMT and *NODEBUGIO features in releases of the
RPG IV compiler prior to V4R4, where the support is in the base release. This
information is referenced in 1.3.5, “Version 4 Release 4 (V4R4)” on page 11.

You need a compiler PTF for the release where you compile the programs and a
runtime PTF for the release where you run your programs. For example, if you
compile on V4R2 with TGTRLS(V3R2M0), you need SF47055 on the V4R2
system, and you need SF45189 on the V4R2 system if you want to run your
program there. You also need SF45788 on the V3R2 system where you run your
program. If you compile and run any programs on your V4R2 system for the
*CURRENT release, you also need SF45191.

Table 98. PTFs for the OPTION *SRCSTMT and *NODEBUGIO features

Please note that PTF numbers occasionally change over time. To check for the
most current PTFs for any product, you can refer to the AS/400 Technical Support
Web site for a list of current PTFs. It is located at:
http://as400service.rochester.ibm.com

Select the option Technical Info and Databases, which leads you to an option to
see PTF cover letter information.

Release Compiler
(57xxRG1)

TGTRLS Runtime
(57xxSS1)

V3R2 SF46001 *CURRENT SF45788

V3R6 SF45749 *CURRENT SF45430

V3R7 SF46327 *CURRENT SF46321

SF47056 *PRV,V3R2,V3R6

V4R1 SF46327 *CURRENT,*PRV SF46462

SF47056 V3R2, V3R6

V4R2 SF45191 *CURRENT SF45189

SF46944 *PRV,V4R1,V3R7

SF47055 V3R2

V4R3 SF45191 *CURRENT N/A

SF46944 *PRV,V4R1,V3R7

SF47055 V3R2
© Copyright IBM Corp. 2000 417

418 Who Knew You Could Do That with RPG IV?

Appendix D. Special notices

This publication is intended to help application developers to take full advantage
of the RPG IV language and the AS/400 system running V4R4 of OS/400. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by Operating System/400 or IBM
Integrated Language Environment (ILE) RPG for AS/400. See the
PUBLICATIONS section of the IBM Programming Announcement for Operating
System/400 or IBM Integrated Language Environment (ILE) RPG for AS/400 for
more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
© Copyright IBM Corp. 2000 419

environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In Denmark,
Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

AS/400 AT
C/400 CICS
CICS/400 CT
DB2 IBM
Integrated Language Environment Language Environment
MQ MQSeries
Net.Data Netfinity
NetView Network Station
Operating System/400 OS/2
OS/400 RMF
RPG/400 RS/6000
S/390 SP
SQL/400 System/36
System/38 System/390
VisualAge XT
400
420 Who Knew You Could Do That with RPG IV?

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.
Special notices 421

422 Who Knew You Could Do That with RPG IV?

Appendix E. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 IBM Redbooks publications

For information on ordering these publications see “How to get IBM Redbooks” on
page 427.

• Building AS/400 Applications with Java, SG24-2163

• Complementing AS/400 Storage Management Using Hierarchical Storage
Management, SG24-4450

• AS/400 Applications: Moving to the 21st Century, SG24-4790

• Cool Title About the AS/400 and Internet, SG24-4815

• Net.Commerce V3.2 for AS/400: A Case Study for Doing Business in the New
Millennium, SG24-5198

The following publications are available only through the IBM redbooks site at:
http://www.redbooks.ibm.com/

• Moving to Integrated Language Environment for RPG IV, GG24-4358

• AS/400 Applications: A Fast and Easy Way to Install, Set Up and Work with
VRPG and CODE/400 (ADTS CS), SG24-4841

Simply type the order number of the publication in the Search field at the top of
the window, and click the Go button.

E.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 423

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

E.3 Other resources

These publications are also relevant as further information sources:

• MQSeries for AS/400 Application Programming Reference (RPG), SC33-1957

• ILE RPG for AS/400 Programmer's Guide, SC09-2507

• ILE RPG for AS/400 Reference, SC09-2508

• ILE C Programmer's Guide, SC09-2712

• Security - Reference, SC41-5302

• OS/400 Sockets Programming V4R4, SC41-5422

• ILE Application Development Example V4R1, SC41-5602

• ILE Concepts, SC41-5606

• ILE C for AS/400 Run-Time Library Reference, SC41-5607

• Integrated File System Introduction V4R3, SC41-5711

• CL Programming, SC41-5721

• AS/400 Advanced Series System API Programming, SC41-5800

• AS/400 System API Reference, SC41-5801

• DB2 for OS/400 SQL Call Level Interface, SC41-5806

• OS/400 UNIX-Type APIs V4R4, SC41-5875

• Cozzi, Bob. The Modern RPG Language. Midrange Computing, 1996 (ISBN
0-9621825-08).

• Cozzi, Bob. The Modern RPG IV Language. Midrange Computing, 1999
(ISBN: 1-5834700-26).

• Kernighan, Brian and Plauger, P.J. The Elements of Programming Style.
McGraw-Hill Book Company, 1998 (ISBN: 0-0703420-75).

• Meyers, Bryan. RPG/IV Jump Start. 29th Street Press, 1997 (ISBN:
1-8824196-77)

• Meyers, Bryan. Starter Kit for the AS/400. 29th Street Press (Duke Press),
1994 (ISBN 1-882419-09-X).

• Meyers, Bryan. Control Language Programming for the AS/400. 29th Street
Press, 1997 (ISBN: 1-8824197-66).

• Meyers, Bryan and Sutherland, Jef. VisualAge for RPG by Example. 29th
Street Press, 1998 (ISBN: 1-8824198-39).

• Popeil, Russ. RPG Error Handling Technique: Bulletproofing your applications.
29th Street Press, 1997 (ISBN: 1-8824193-83).

The following publications are available in softcopy only on the Web at:
http://www.search400.com

• DB2 for OS/400 SQL Programming, SC41-4611

• DB2 for OS/400 SQL Reference, SC41-4612
424 Who Knew You Could Do That with RPG IV?

http://www.search400.com

The following publications are available in softcopy only by searching the site at:
http://publib.boulder.ibm.com/pubs/html/as400/online/homeeng1.htm

• AS/400e HTTP Server for AS/400 Web Programming Guide, GC41-5435

• OS/400 Integrated Language Environment (ILE) CEE APIs V4R4, SC41-5861

• System API Reference: OS/400 Message Handling APIs, SC41-5862

• System API Reference: OS/400 National Language Support APIs, SC41-5863

• System API Reference: OS/400 Object APIs, SC41-5865

• OS/400 Program and CL Command APIs V4R4, SC41-5870

E.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• For information on IBM certification programs: http://www.ibm.com/certify

• IBM Redbooks home page: http://www.redbooks.ibm.com

• IBM Partners in Development Web site: http://www.as400.ibm.com/developer

• IBM Information Center:
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html or
http://www.as400.ibm.com/infocenter

• IBM Technical Studio:
http://publib.boulder.ibm.com/pubs/html/as400/techstudio.htm and
http://www.as400.ibm.com/techstudio

• IBM online documentation:
http://publib.boulder.ibm.com/html/as400/onlinelib.htm and
http://as400bks.rochester.ibm.com

• IBM Integrated Language Environment (ILE) RPG for AS/400 is located at:
http://www.software.ibm.com/ad/as400/library/ilerpg44.html

• VisualAge RPG and Code/400 is located at:
http://www.software.ibm.com/ad/varpg

• A good AS/400 system specific search site can be found at
http://www.search400.com

• Experience RPG IV Tutorial by Rogers, by Masri & Santilli, can be found on
the Advice Press Web site at: http://www.advice.com

• Robert Cozzi’s RPG Web site is located at: http://www.rpgiv.com

• The Modern RPG IV Language, by Robert Cozzi, can be found at:
http://www.mc-store.com

• The 400 Group, which has an ILE RPG IV focus area is located at:
http://www.the400group.com

• Midrange.com home page: http://www.midrange.com

• NEWS/400 has active forums (like a news group) on RPG at:
http://www.news400.com/navbar/Glance-Forums.html

• The AS/400 user group called COMMON is located on the Web at:
http://www.common.org

• For European COMMON activities, got to: http://www.comeur.org/f_events.htm
Related publications 425

http://publib.boulder.ibm.com/pubs/html/as400/online/homeeng1.htm
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html
http://www.as400.ibm.com/infocenter
http://publib.boulder.ibm.com/pubs/html/as400/techstudio.htm
http://www.as400.ibm.com/techstudio
http://publib.boulder.ibm.com/html/as400/onlinelib.htm
http://as400bks.rochester.ibm.com
http://www.software.ibm.com/ad/as400/library/ilerpg44.html
http://www.software.ibm.com/ad/varpg
http://www.search400.com
http://www.advice.com
http://www.mc-store.com
http://www.the400group.com
http://www.midrange.com
http://www.news400.com/navbar/Glance-Forums.html
http://www.common.org
http://www.comeur.org/f_events.htm

• AS/400 Manager’s online resource is available at: http://www.hotlink400.com

• An eclectic collection of AS/400 code examples from NEWS/400 Tips and
Techniques Community is on the Web at:
http://www.tnt400.com/codepage400.htm

• RPG IV Jump Start, by Bryan Meyers, and VisualAge for RPG by Example, by
Bryan Meyers and Jef Sutherland, can be found at:
http://www.news400store.com

• IBM’s AS/400 Magazine: http://www.as400magazine.com

• Midrange Computing home page: http://www.midrangecomputing.com

• Midrange Systems: http://www.midrangesystems.com

• Duke Communications home page: http://www.dukepress.com

• IBM CGI programming: http://www.as400.ibm.com/developer/ebiz/cgi

• For a library of code examples, samples, and tools, got to:
http://www.as400.ibm.com/snippets

• CGI test cases: http://hoohoo.ncsa.uiuc.edu/cgi/examples.html

• IBM AS/400 Custom Technology Center Web site:
http://www.as400.ibm.com/service/welcome_3.htm

• Easy AS/400 site for RPG programmers: http://www.easy400.ibm.it

• For information on MQSeries, go to: http://www.software.ibm.com/ts/mqseries

• RPG Developer Network News on RPGIV.com at:
http://www.rpgIV.com/rpgnews/Feb99a/highmath.html and
http://www.rpgIV.com/rpgnews/Feb99b/timerpg.html

• Reference topics on CLI programs from Technical Studio:
http://www.as400.ibm.com/tstudio/tech_ref/cli/cli1.htm

• SQL CLI frequently asked questions: http://www.as400.ibm.com/db2/clifaq.htm

• Reference topics on RPG programs from Technical Studio:
http://www.as400.ibm.com/tstudio/db2_400/cli_rpg/rpg_intro.htm

• AS/400 Technical Support Web site: http://as400service.rochester.ibm.com
426 Who Knew You Could Do That with RPG IV?

http://www.comeur.org/f_events.htm
http://www.hotlink400.com
http://www.tnt400.com/codepage400.htm
http://www.news400store.com
http://www.as400magazine.com
http://www.midrangecomputing.com
http://www.midrangesystems.com
http://www.dukepress.com
http://www.as400.ibm.com/developer/ebiz/cgi
http://www.as400.ibm.com/snippets
http://hoohoo.ncsa.uiuc.edu/cgi/examples.html
http://www.as400.ibm.com/service/welcome_3.htm
http://www.easy400.ibm.it
http://www.software.ibm.com/ts/mqseries
http://www.rpgIV.com/rpgnews/Feb99a/highmath.html
http://www.rpgIV.com/rpgnews/Feb99b/timerpg.html
http://www.rpgIV.com/rpgnews/Feb99b/timerpg.html
http://www.as400.ibm.com/tstudio/tech_ref/cli/cli1.htm
http://www.as400.ibm.com/tstudio/tech_ref/cli/cli1.htm
http://www.as400.ibm.com/db2/clifaq.htm
http://www.as400.ibm.com/tstudio/db2_400/cli_rpg/rpg_intro.htm
http://as400service.rochester.ibm.com

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 427

http://www.redbooks.ibm.com/
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/

IBM Redbooks fax order form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
428 Who Knew You Could Do That with RPG IV?

Index

Symbols
%EOF(FileName) 327
%EQUAL(FileName) 328
%ERROR 328
%FOUND(FileName) 328
%OPEN(FileName) 328
%STATUS(FileName) 329
(*), C data type 120
*ESCAPE message 101
*NOPASS, OPTIONS keyword 51
*OMIT, OPTIONS keyword 51
*RIGHTADJ, OPTIONS keyword 51
*STRING, OPTIONS keyword 51, 121, 125
*VARSIZE, OPTIONS keyword 51

A
accept() (sockets) 195
activation group 61
activation groups, ILE 63, 89
Add Binding Directory Entry (ADDBNDDIRE) 64, 87
Add Physical File Trigger (ADDPFTRG) 380
API

CGI (for HTTP) 235
data queue 136
database access 315
message handling 170
sockets 189
UNIX-POSIX (IFS) 252
user exit programs 303
user space 153

automatic binding 63
automatic variable 63

B
bind by copy 66
bind by reference 71
bind() (sockets) 193
binder language 84

ENDPGMEXP 84
EXPORT 85
STRPGMEXP 85

binder language source 62
binding 62
binding directories 63, 87, 123
block 223
bsearch 128, 129
built-in functions 327

C
Call Level Interface (CLI) 348
Carr, John 2
Case 103
Certified Specialist AS/400 RPG programmer 16
CGI

Convert to DB (QtmhCvtDB) 240
© Copyright IBM Corp. 2000
Get environment variable (QtmhGetEnv) 239
Parse data (QzhbCgiParse) 241
persistent 251
Produce full HTTP response (QzhbCgiUtils) 241
Put environment variable (QtmhPutEnv) 240
Read from stdin (QtmhRdStin) 240
Write to stdout (QtmhWrStout) 240

CGI (for HTTP) 235
Change User Space (QUSCHGUS) 157
Change User Space Attributes (QUSCUSAT) 158
char *, C data type 120
char, C data type 120
CL commands and useful ILE APIs 115
CL commands used with ILE and RPG 64
Clear Data Queue (QCLRDTAQ) 148
CLI 348

SQLAllocEnv() 357, 358
SQLAllocStmt() 359
SQLBindCol() 361
SQLBindParam() 362
SQLDisconnect() 367
SQLError() 365
SQLExecDirect() 363
SQLExecute() 362
SQLFetch() 364
SQLFreeConnect() 368
SQLFreeEnv() 368
SQLFreeStmt() 366
SQLPrepare() 360
SQLSetConnectOption() 359
SQLTransact() 364

close() (sockets) 199
close(), IFS 262
CODE/400 389

Designer for DDS 393
editor 389
graphical source debugger 394
project oganizer 394
verifier 392

commitment control 384
with CLI 387
with native I/O 384
with SQL 386

Common Gateway Interface 235
condition handler 101
connect() (sockets) 195
connection-oriented 189
CONST keyword 51, 55, 121
constant reference 55
Control 103
control boundary 99
Convert to DB (QtmhCvtDB) 240
CoOperative Development Environment (CODE/400) 389
Coulter, Simon 2
Cozzi, Bob 2
creat(), IFS 257
Create Binding Directory (CRTBNDDIR) 64, 87
Create Bound RPG Program (CRTBNDRPG) 64
429

Create Bound RPG Program (CRTBNDRPG) command
119
Create Data Queue (CRTDTAQ) 139
Create Journal (CRTJRN) 384
Create Journal Receiver (CRTJRNRCV) 384
Create Program (CRTPGM) 64
Create Program (CRTPGM) command 119
Create RPG Module (CRTRPGMOD) 64
Create RPG Module (CRTRPGMOD) command 119
Create Service Program (CRTSRVPGM) 62, 64
Create User Space (QUSCRTUS) 154
CRTBNDRPG (Create Bound RPG Program) command
119
CRTPGM (Create Program) command 119
CRTRPGMOD (Create RPG Module) command 119
cursor, using in SQL 333

D
data queue 136
data type comparison between C and RPG 120
database access 315

Call Level Interface (CLI) 348
commitment control 384
embedded SQL 330
externalizing input and output 315
replacing indicators 327
stored procedures 339
trigger programs 379

db
%EOF(FileName) 327
%EQUAL(FileName) 328
%ERROR 328
%FOUND(FileName) 328
%OPEN(FileName) 328
%STATUS(FileName) 329

DDS 393
definitions 62
Delete User Space (QUSDLTUS) 155
Display Module (DSPMOD) 64, 115
Display Program (DSPPGM) 64, 116
Display Service Program (DSPSRVPGM) 64, 116
Display Stream File (DSPSTMF) 253
double *, C data type 120
double, C data type 120

E
Edit File (EDTF) 253
Embedded SQL 330
errno 203, 301
error handling and call stack, ILE 99
Essential RPG IV Style Guide, The 19

comments on 27
Evolution of RPG IV 9
exit point 303
exit point QIBM_A1A_RETR_INF 312
EXPORT 85
export and import 62
exports 62
externalizing 315

externalizing input and output 315
externalizing input/output 315

F
file descriptor 257
file journaling 384
free-form call 38
FTP client/server request validation program 303

G
Get environment variable (QtmhGetEnv) 239
gethostbyname() (sockets) 196
graphical user interface (GUI) 395

H
history of RPG IV 9
host structure 338
HTML form 236
HTTP server and CGI 235

I
IFS

close() 262
creat() 257
lseek() 269
open() 257
Qp0lProcessSubtree() 280
read() 268
write() 264

ILE 61
activation groups 63, 89
error handling and call stack 99
introduction to 15
modules and binding 61
relationship to RPG IV 14
service programs 62
signatures 83
tips for the RPG programmer 65
using RPG IV without 15

imports 62
indicators, named 10, 22, 327
InetAddr() (sockets) 197
int *, C data type 120
int, C data type 120
Integrated File System 252
interview with RPG experts 1

J
Java 12, 395

L
List ILE Program Information (QBNLPGMI) 116
List Job Log Messages (QMHLJOBL) 177
List Module Information (QBNLMODI) 115
List Service Program Information (QBNLSPGM) 116
listen() (sockets) 194
430 Who Knew You Could Do That with RPG IV?

logical unit of work (LUW) 384
long, C data type 120
LOOKUP (search) 128
lseek(), IFS 269

M
math functions 122
message handling 170
Meyers, Bryan 2, 19
modules and binding, ILE 61
MQSeries 137

N
named indicators 10, 22, 327
non-blocking mode 223

O
open data path (ODP) 91
open(), IFS 257
OPTIONS keyword 51

P
Parse data (QzhbCgiParse) 241
percolation 101
Persistent CGI 251
Popeil, Russ 3
procedure interface definition 36
procedure pointer call 56
PROCPTR keyword 122
Produce full HTTP response (QzhbCgiUtils) 241
promotion 103
prototyping 10

how to 120
power of 50

Put environment variable (QtmhPutEnv) 240

Q
QC2LE, binding directory 123
QIBM_A1A_RETR_INF exit point 312
QLANSrv, IFS 414
QOPENSYS, IFS 414
Qp0lProcessSubtree, IFS 280
qsort 128, 129
queue, data 136

R
Read from stdin (QtmhRdStin) 240
read() (sockets) 198
read(), IFS 268
Receive Data Queue (QRCVDTAQ) 140
Receive Program Message (QMHRCVPM) 175
recursion 33
Remove Physical File Trigger (RMVPFTRG) 380
Retrieve Data Queue Description (QMHQRDQD) 147
Retrieve Data Queue Message (QMHRDQM) 144
Retrieve Pointer to User Space (QUSPTRUS) 156

Retrieve User Space (QUSRTVUS) 156
Retrieve User Space Attributes (QUSRUSAT) 157
roadmap to RPG IV 12
root, IFS 414
RPG expert interview 1
RPG IV

dead? 1
evolution 9
future 11
history 9
prototypes 10
roadmap to 12
style guide 19

comments on 27
subprocedures 10

S
searching and sorting 128
Send Data Queue (QSNDDTAQ) 139
Send Program Message (QMHSNDPM) 173
service programs 71

ILE 62
setsockopt() (sockets) 193
Severity 103
short, C data type 120
socket address 191
socket descriptor 191
socket functions

accept() 195
bind() 193
close() 199
connect() 195
fcntl() 224
gethostbyname() 196
InetAddr() 197
listen() 194
read() 198
select() 210
setsockopt() 193
socket() 191
write() 199

socket() (sockets) 191
sockets 189

multiple I/O 215
non-blocking mode 223
wait for events 210

SORTA (sort) 128
sorting and searching 128
SQL Communication Area (SQLCA) 332
SQL, using a cursor 333
SQLAllocConnect() (CLI) 358
SQLAllocEnv() (CLI) 357
SQLAllocStmt() (CLI) 359
SQLBindCol() (CLI) 361
SQLBindParam() (CLI) 362
SQLCA (SQL Communication Area) 332
SQLConnect() (CLI) 358
SQLDisconnect() (CLI) 367
SQLError() (CLI) 365
SQLExecDirect() (CLI) 363
431

SQLExecute() (CLI) 362
SQLFetch() (CLI) 364
SQLFreeConnect() (CLI) 368
SQLFreeEnv() (CLI) 368
SQLFreeStmt() (CLI) 366
SQLPrepare() (CLI) 360
SQLSetConnectOption() (CLI) 359
SQLTransact() (CLI) 364
Start Journal Physical File (STRJRNPF) 384
static procedure call 59
static variable 63
stored procedures 339
string functions 124
STRPGMEXP 85
style guide

comments 27
RPG IV 19

subprocedures 10
prototypes 50

system registry 303

T
transaction 384
trigger programs 379
Tuohy, Paul 3

U
UCS-2 (Unicode) 292
Unicode 291, 292
UNIX-POSIX (IFS) 252
unsigned *, C data type 120
unsigned int, C data type 120
Update Program (UPDPGM) 115
Update Service Program (UPDSRVPGM) 115
user exit programs 303
user interface 14
user space 153

V
VALUE keyword 54, 120
VisualAge for RPG (VARPG) 395
void *, C data type 120

W
Work with Binding Directory Entries (WRKBNDDIRE) 64,
87
Work with Registration Information (WRKREGINF) 303,
311
wrappering 160
Write to stdout (QtmhWrStout) 240
write() (sockets) 199
write(), IFS 264
432 Who Knew You Could Do That with RPG IV?

© Copyright IBM Corp. 2000 433

IBM Redbooks evaluation

Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and More
SG24-5402-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other Redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

SG24-5402-00

Printed in the U.S.A.

W
ho

K
new

Y
ou

C
ould

D
o

T
hat

w
ith

R
P

G
IV

?
A

Sorcerer’s
G

uide
to

System
A

ccess
and

M
ore

SG
24-5402-00

®

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. An introduction to RPG IV
	1.1 Why this book on RPG IV now?
	1.2 An interview with leading industry experts
	1.3 Evolution of the RPG IV language
	1.3.1 Version 3 Release 1 (V3R1)
	1.3.2 Version 3 Release 2 (V3R2) and Version 3 Release 6 (V3R6)
	1.3.3 Version 3 Release 7 (V3R7)
	1.3.4 Version 4 Release 2 (V4R2)
	1.3.5 Version 4 Release 4 (V4R4)
	1.3.6 The future for RPG IV
	1.3.7 A future for RPG programmers
	1.3.8 A roadmap

	1.4 The relationship between the RPG IV language and ILE
	1.4.1 A brief introduction to the Integrated Language Environment (ILE)
	1.4.2 Using RPG IV without ILE

	1.5 IBM Certified Specialist AS/400 RPG programmer
	1.6 RPG IV sources on the Web
	1.6.1 General AS/400 resources from IBM
	1.6.2 Non-IBM general AS/400 resources
	1.6.3 AS/400 magazines and books on the Web

	Chapter 2. Programming RPG IV with style
	2.1 The essential RPG IV style guide
	2.1.1 Comments
	2.1.2 Declarations
	2.1.3 Naming conventions
	2.1.4 Indicators
	2.1.5 Structured programming techniques
	2.1.6 Modular programming techniques
	2.1.7 Character string manipulation
	2.1.8 Avoid obsolescence
	2.1.9 Miscellaneous guidelines
	2.1.10 Recommendations

	2.2 Comments and extensions to the style guide

	Chapter 3. Subprocedures
	3.1 Subprocedure terminology
	3.1.1 ILE modules
	3.1.2 Main procedure
	3.1.3 Built-in functions
	3.1.4 Subroutines

	3.2 Advantages of using subprocedures
	3.3 The anatomy of a subprocedure
	3.3.1 Subprocedure definition
	3.3.2 Procedure-interface definitions
	3.3.3 Order of coding the source elements
	3.3.4 Calling your subprocedures

	3.4 Moving from subroutines to subprocedures
	3.4.1 Why use subprocedures
	3.4.2 Subroutine example DATESUBR
	3.4.3 Transforming a subroutine to a subprocedure
	3.4.4 DATEMAIN1 subprocedure example

	3.5 Using subprocedures efficiently
	3.5.1 Using /COPY members for prototypes
	3.5.2 Replacing the *ENTRY PLIST
	3.5.3 Subprocedures using subprocedures
	3.5.4 Using an ILE Service Program

	3.6 More on subprocedures
	3.6.1 The power of prototyping
	3.6.2 Parameter passing styles
	3.6.3 Using procedure pointer calls

	Chapter 4. An ILE guide for the RPG programmer
	4.1 An introduction to ILE
	4.1.1 Modules and binding
	4.1.2 Service programs
	4.1.3 Export and import
	4.1.4 Binder language source
	4.1.5 Binding directories
	4.1.6 Activation groups
	4.1.7 CL commands used with ILE and RPG

	4.2 ILE tips for the RPG programmer
	4.2.1 Creating programs from modules (binding by copy)
	4.2.2 Creating service programs and binding by reference
	4.2.3 Binding service programs to programs
	4.2.4 Service programs, binder language, and signatures
	4.2.5 Using binding directories
	4.2.6 Activation groups
	4.2.7 Call stack and error handling

	4.3 Additional CL commands and useful ILE APIs
	4.3.1 Additional CL commands
	4.3.2 Some useful APIs to get information on ILE objects

	4.4 More information about ILE and shared open data paths

	Chapter 5. Exploring new ways to exploit your AS/400 system
	5.1 Exploiting the C function library: A case study
	5.1.1 First things first
	5.1.2 Simple math functions
	5.1.3 String functions
	5.1.4 Searching and sorting: bsearch and qsort

	5.2 Data queue APIs
	5.2.1 Creating and deleting data queues
	5.2.2 List of data queue APIs
	5.2.3 Programming with data queue APIs

	5.3 User space APIs
	5.3.1 List of user space APIs
	5.3.2 Programming directly with user space APIs
	5.3.3 Simplifying user space APIs programming with wrappers
	5.3.4 A user space example

	5.4 Message handling APIs
	5.4.1 Message types
	5.4.2 List of message handling APIs
	5.4.3 Programming with message handling APIs

	5.5 Sockets
	5.5.1 Typical communication between a server and client
	5.5.2 The socket functions interface
	5.5.3 Example of a simple server SSERVER and client SCLIENT
	5.5.4 Server SSERVER2 and client SCLIENT2 with recovery
	5.5.5 Communication with multiple sockets (multiple I/O)
	5.5.6 Example of multiple I/O
	5.5.7 Server and client using non-blocking mode
	5.5.8 Running the examples
	5.5.9 More information about sockets programming in RPG IV

	5.6 Writing CGI programs using RPG IV
	5.6.1 HTML form document
	5.6.2 Introduction to a service program to aid CGI programing
	5.6.3 RPG IV CGI programming
	5.6.4 Simplifying CGI programming
	5.6.5 Persistent CGI
	5.6.6 More information on CGI programming in RPG IV

	5.7 Understanding UNIX-POSIX APIs through IFS examples
	5.7.1 The Integrated File System (IFS)
	5.7.2 The API manual
	5.7.3 The path name
	5.7.4 Introducing basic stream file APIs
	5.7.5 Using more complex IFS APIs: Qp0lProcessSubtree()
	5.7.6 IFS APIs error reporting
	5.7.7 More information about IFS APIs in RPG IV

	5.8 User exit programs
	5.8.1 The system registry
	5.8.2 The FTP client/server validation request exit points
	5.8.3 The FTP client/server request validation sample program
	5.8.4 More information about user exit programs

	Chapter 6. Database access with RPG IV
	6.1 Externalizing input and output
	6.1.1 What we mean by externalizing
	6.1.2 Putting theory into practice: An example of externalizing I/O
	6.1.3 Externalizing example: Overview
	6.1.4 Externalizing example: Separating database logic from display logic
	6.1.5 Externalizing example: Implementing changes
	6.1.6 Externalizing example: Other possibilities
	6.1.7 Summary

	6.2 Replacing indicators with built-in functions
	6.2.1 %EOF(FileName)
	6.2.2 %EQUAL(FileName)
	6.2.3 %FOUND(FileName)
	6.2.4 %OPEN(FileName)
	6.2.5 %ERROR
	6.2.6 %STATUS(FileName)
	6.2.7 Indicator data structure

	6.3 Embedded SQL
	6.3.1 Rules for embedding SQL statements
	6.3.2 SQL preprocessor
	6.3.3 Error and exception handling
	6.3.4 Using a cursor
	6.3.5 An embedded SQL program example
	6.3.6 Source code for SQLEMBED program

	6.4 Stored procedures
	6.4.1 Creating an external procedure
	6.4.2 Creating an SQL procedure
	6.4.3 Invoking a stored procedure and returning the completion status
	6.4.4 A stored procedure example

	6.5 Call Level Interface
	6.5.1 Differences between DB2 CLI and embedded SQL
	6.5.2 Writing a DB2 CLI application
	6.5.3 Initialization and termination
	6.5.4 Transaction processing
	6.5.5 Diagnostic
	6.5.6 Data types and data conversion
	6.5.7 Functions
	6.5.8 Introduction to a CLI example

	6.6 Trigger programs
	6.6.1 Adding a trigger program to a file
	6.6.2 Creating a trigger program

	6.7 Commitment control
	6.7.1 File journaling
	6.7.2 Using commitment control with RPG native file operations
	6.7.3 Using commitment control with embedded SQL
	6.7.4 Using commitment control with the CLI interface

	6.8 More information about database access with RPG IV

	Chapter 7. A modern tool for a modern language: CODE/400
	7.1 The CODE/400 editor
	7.2 The CODE/400 verifier
	7.3 The CODE/400 Designer for DDS
	7.4 Other tools included with CODE/400
	7.5 More information about CODE/400

	Chapter 8. VisualAge for RPG as a GUI for RPG applications
	8.1 The different VARPG application models
	8.2 VARPG thin application models
	8.3 The user interface for the client application
	8.4 Sample application using remote calls
	8.4.1 The client program
	8.4.2 The server program
	8.4.3 Sample RPG source for the client side
	8.4.4 Sample RPG source for the server side
	8.4.5 Overview diagram

	8.5 Sample application using data queues
	8.5.1 The client application
	8.5.2 Client sample source
	8.5.3 The server program
	8.5.4 Server sample source
	8.5.5 Overview diagrams

	8.6 Variations of these scenarios
	8.7 Summary
	8.8 More information VisualAge for RPG

	Appendix A. Example RPG IV programs on the Web
	A.1 Downloading the files

	Appendix B. An introduction to the Integrated File System (IFS)
	B.1 Introduction
	B.2 Integrated File System structure
	B.2.1 Stream files

	B.3 Path name rules using APIs

	Appendix C. PTFs for *SRCSTMT and *NODEBUGIO
	Appendix D. Special notices
	Appendix E. Related publications
	E.1 IBM Redbooks publications
	E.2 IBM Redbooks collections
	E.3 Other resources
	E.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks evaluation

